• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 17
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Angular Dependence of the MatriXX Evolution

Sopher, Daniel A. 10 1900 (has links)
<p>The purpose of this thesis is to explore the angular response to dose of the MatriXX Evolution, manufactured by IBA Dosimetry, a 2-dimensional ion chamber array used for patient specific quality assurance of advanced radiotherapy techniques such as IMRT and VMAT. Investigations were made to characterize the angular response of the MatriXX and describe any differences from the Philips Pinnacle<sup>3</sup> Treatment Planning System (TPS) used at the Juravinski Cancer Centre.</p> <p>A comparison was made between the gantry angle dependent correction factors supplied by the manufacturer and those derived by measurement. Gantry angle dependent correction factors were derived, with the MatriXX under 5cm polystyrene build-up and without any build-up, for the 5 x 5 cm<sup>2</sup>, 10 x 10 cm<sup>2</sup> and 20 x 20 cm<sup>2</sup> field sizes.</p> <p>For gantry angles ranging from 320<sup>o</sup> to 40<sup>o</sup> the maximum difference between the derived gantry angle dependent correction factors and those provided by the manufacturer is 1.5%, at a gantry angle of 320<sup>o</sup>, a 5 x 5 cm<sup>2</sup> field and without build-up. The differences for the 10 x 10 cm<sup>2</sup> and 20 x 20 cm<sup>2</sup> fields within this gantry angle range are less than 1%. Between gantry angles of 50<sup>o</sup> and 130<sup>o</sup> the largest difference is 4.9% at 100<sup>o</sup>, for the 5 x 5 cm<sup>2</sup>field without build-up. The other field sizes show similar differences; 4.7% at gantry angle of 120<sup>o</sup> for 10 x 10 cm<sup>2</sup> with build-up and 4.0% at a gantry angle of 80<sup>o</sup> without build-up. Between gantry angles of 140<sup>o</sup> to 220<sup>o</sup> the greatest discrepancy is for the 5 x 5 cm<sup>2</sup> field with build-up, a difference of 3.0%. The 10 x 10 cm<sup>2</sup> has a maximum difference of 2.4% at gantry angles of 180<sup>o</sup> and 200<sup>o</sup>, both when the MatriXX has build-up. The maximum discrepancy for gantry angle dependent correction factors for the 20 x 20 cm<sup>2</sup> fields is at a gantry angle of 140<sup>o</sup>, when the MatriXX has build-up. Between the gantry angles of 230<sup>o</sup> to 310<sup>o</sup> the largest discrepancy occurs between the derived gantry angle dependent correction factors and those supplied by the manufacturer. For the 5 x 5 cm<sup>2</sup>, 10 x 10 cm<sup>2</sup> and 20 x 20 cm<sup>2</sup> fields respectively the largest differences are 5.9%, 4.5% and 4.9%. All three occur when there is no build-up.</p> / Master of Science (MSc)
42

Konstrukční návrh lineární osy pro multifunkční obráběcí centrum / Design of linear axis for heavy machine tool

Dostál, Martin January 2021 (has links)
This diploma thesis is concerned with providing a construction proposal of a linear axis X for multifunctional machining center. Moreover, this work presents characterisations of machining centers, overview of manufacturers, list of main construction components used in the linear axis, their evaluation, assessment of various options for construction, which are then explained further. These detailed construction methods include calculations with the subsequent choice of feed system component. Ultimately, final evaluation of chosen option is provided as well. Another section of this thesis is also an economical assessment and 3D model alongside with mechanical drawing.
43

Development of a crane load software application for electric driven overhead travelling bridge cranes in accordance with SANS 10160-6:2010

De Waal, Arthur William 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Electric driven overhead travelling bridge cranes (EOHTC) form a vital part of industrial plants where heavy objects require moving. Overhead travelling cranes aid in production by allowing an uninterrupted work process on the ground while heavy loads are moved to their required locations. Various factors need consideration in determining the loads induced by an EOHTC on its support structure. In order to design such a support structure, the designer must understand and take into account the various loads that the support structure will be subject to during its lifetime. The procedure for determining the loads induced by the EOHTC on its support structure is laid out in the SANS 10160-6:2010 code of practice. This document was published in June 2010 and as a result very few worked examples exist to test the coherence of the procedure. This thesis presents an investigation into the procedure for determining the actions induced by overhead travelling bridge cranes adopted in the SANS 10160-6:2010 code of practice. The investigation was conducted by developing a software application to automatically determine the necessary crane actions needed for the design of the crane support structure, given certain input parameters. The motivation behind this was to have a tool that can calculate the crane induced loads automatically. And by developing such a tool the procedure given in the code of practice is better understood. The Java programming language was used to code the calculations with an object oriented programming approach (OOP). NetBeans, the integrated development environment for developing with Java was used to generate the required graphical user interface of the application. In addition, a Microsoft Excel calculation sheet was also developed for the purpose of comparison and verification. Whilst developing the software application, it was found that the model for the acceleration or deceleration of the crane was specific for four wheel cranes only. This model was then extended to accommodate eight and sixteen wheel cranes and incorporated into the algorithm architecture of the application. The application was successfully completed and verified using benchmarked examples. / AFRIKAANSE OPSOMMING: Elektriese oorhoofse brugkrane vorm ‘n belangrike deel van baie nywerheidsprosesse, waar dit gebruik word om swaar laste in die nywerheidsaanleg te verskuif. Oorhoofse brugkrane voeg waarde by die produksie lyn deur te sorg dat die werksproses op die grond onversteurd voortgaan terwyl swaar laste na hul vereiste posisies verskuif word. Verskillende faktore moet in ag geneem word om die nodige kraanlaste te bepaal. Hierdie laste word benodig om die kraan se ondersteuningstruktuur te ontwerp. Die ontwerper moet die nodige kundigheid hê en moet ook die verskeie laste in ag neem wat die ondersteuningstruktuur gedurende sy leeftyd sal dra. SANS 10160-6:2010 verskaf riglyne vir die bepaling van die laste wat deur oorhoofse brugkrane uitgeoefen word. Hierdie dokument is in Junie 2010 gepubliseer dus bestaan daar min uitgewerkte voorbeelde om die korrektheid van die riglyne te toets en toepassing te demonstreer. Hierdie proefskrif ondersoek die riglyne vir die bepaling van oorhoofse brugkraan aksies soos uiteengesit in die SANS 10160-6:2010. Die navorsing is uitgevoer deur middel van die ontwikkeling van ‘n sagteware toepassing wat die nodige oorhoofse brugkraanlaste automaties bepaal, gegee sekere invoer waardes. Die rede hiervoor was om ‘n hulpmiddel te ontwikkel vir die outomatiese bepaling van oorhoofse brugkraan. Deur die bogenoemde hulpmiddel te ontwikkel word die riglyne, soos gegee in die kode beter verstaan. Java is gebruik as programmeringstaal waar die objek geörienteerde programeringstyl toegepas was. Die geintegreerde ontwikkelingsomgewing vir ontwikkeling met Java, naamlik NetBeans is gebruik om die nodige gebruikers koppelvlak op te bou. ‘n Microsoft Excel sigblad is ook ontwikkel vir kontrolerings doeleindes. Gedurende die ontwikkeling van die sagtewarepakket is dit bevind dat die lasmodel vir die versnelling of vertraging van die oorhoofse brugkraan slegs op vierwiel krane van toepasing is. Hierdie lasmodel is dus uitgebrei om agt- en sestienwiel krane ook te bevat. Die lasmodel aanpassing is dan ook in die program se algoritme-argitektuur ingebou. Die sagteware toepassing is suksesvol ontwikkel en gekontroleer met ‘n maatstaf voorbeeld.
44

Controle anti-oscilatório de tempo mínimo para guindaste usando a programação linear. / Minimum-time anti-swing control of gantry cranes using linear programming.

Souza, Edson José Cardoso de 20 October 2009 (has links)
O problema de transferir uma carga ao se movimentar num plano em tempo mínimo e sem oscilação no ponto de descarga, num guindaste portuário tipo pórtico é investigado neste trabalho. Assume-se que a carga esteja inicialmente em repouso na posição vertical no ponto de carga acima do navio e igualmente em repouso no ponto de descarga na moega de alimentação no porto. Assume-se também que o carro do guindaste esteja em repouso em ambos os pontos. Um modelo completo é apresentado para o sistema do guindaste onde as equações dinâmicas não-lineares são linearizadas para ângulos de oscilação pequenos o suficiente e reescritas para a forma adimensional. A solução de tempo mínimo é buscada considerando como variáveis de controle as funções do tempo que descrevem tanto a força aplicada no carro para produzir seu deslocamento horizontal, como a velocidade de içamento da carga. Um método iterativo preditor-corretor usando a Programação Linear (PL) é proposto, baseado no modelo do sistema de tempo discreto onde as variáveis de controle são tomadas constantes por trechos. Na etapa corretora, assume-se que o movimento de içamento é dado e uma solução de tempo mínimo é obtida resolvendo-se uma seqüência de problemas de PL de tempo fixo e máximo deslocamento. Na etapa preditora, um modelo linearizado é empregado para obter-se uma correção ótima do movimento de içamento usando a PL. O problema de controle de tempo mínimo é formulado levando-se em consideração restrições práticas na velocidade do carro do guindaste, velocidade máxima de içamento, assim como na máxima força que pode ser aplicada ao carro. Resultados numéricos são apresentados e mostram a efetividade do método. / The problem of minimum-time anti-swing transfer of a load in a ship-to-pier gantry crane is investigated in this work. The load is assumed to be initially at rest at the vertical position at the loading point above the ship and equally at rest at the unloading point above the hopper. The trolley is also assumed to be at rest at both points. A complete model is presented for the crane system where the nonlinear dynamic equations are linearized for sufficiently small swing angles and then rewritten in dimensionless form. The minimum-time solution is sought by considering as control variables both the force applied on the trolley that produces its horizontal motion and the hoisting speed of the load as functions of time. A predictor-corrector iterative method using Linear Programming (LP) is proposed based on a discretetime model of the system where the control variables are taken as stepwise constants. At the corrector step, the hoisting motion is assumed given and a minimum-time solution is obtained by solving a sequence of LP problems representing fixed-time maximum-range problems. At the predictor step, a linearized model is employed to obtain an optimal correction of the hoisting motion using LP. The minimum-time control problem is formulated by taking into account practical constraints on the maximum speeds of both the trolley and the load hoisting, as well as on the maximum force that can be applied to the trolley. Numerical results are presented and show the effectiveness of the method.
45

Controle anti-oscilatório de tempo mínimo para guindaste usando a programação linear. / Minimum-time anti-swing control of gantry cranes using linear programming.

Edson José Cardoso de Souza 20 October 2009 (has links)
O problema de transferir uma carga ao se movimentar num plano em tempo mínimo e sem oscilação no ponto de descarga, num guindaste portuário tipo pórtico é investigado neste trabalho. Assume-se que a carga esteja inicialmente em repouso na posição vertical no ponto de carga acima do navio e igualmente em repouso no ponto de descarga na moega de alimentação no porto. Assume-se também que o carro do guindaste esteja em repouso em ambos os pontos. Um modelo completo é apresentado para o sistema do guindaste onde as equações dinâmicas não-lineares são linearizadas para ângulos de oscilação pequenos o suficiente e reescritas para a forma adimensional. A solução de tempo mínimo é buscada considerando como variáveis de controle as funções do tempo que descrevem tanto a força aplicada no carro para produzir seu deslocamento horizontal, como a velocidade de içamento da carga. Um método iterativo preditor-corretor usando a Programação Linear (PL) é proposto, baseado no modelo do sistema de tempo discreto onde as variáveis de controle são tomadas constantes por trechos. Na etapa corretora, assume-se que o movimento de içamento é dado e uma solução de tempo mínimo é obtida resolvendo-se uma seqüência de problemas de PL de tempo fixo e máximo deslocamento. Na etapa preditora, um modelo linearizado é empregado para obter-se uma correção ótima do movimento de içamento usando a PL. O problema de controle de tempo mínimo é formulado levando-se em consideração restrições práticas na velocidade do carro do guindaste, velocidade máxima de içamento, assim como na máxima força que pode ser aplicada ao carro. Resultados numéricos são apresentados e mostram a efetividade do método. / The problem of minimum-time anti-swing transfer of a load in a ship-to-pier gantry crane is investigated in this work. The load is assumed to be initially at rest at the vertical position at the loading point above the ship and equally at rest at the unloading point above the hopper. The trolley is also assumed to be at rest at both points. A complete model is presented for the crane system where the nonlinear dynamic equations are linearized for sufficiently small swing angles and then rewritten in dimensionless form. The minimum-time solution is sought by considering as control variables both the force applied on the trolley that produces its horizontal motion and the hoisting speed of the load as functions of time. A predictor-corrector iterative method using Linear Programming (LP) is proposed based on a discretetime model of the system where the control variables are taken as stepwise constants. At the corrector step, the hoisting motion is assumed given and a minimum-time solution is obtained by solving a sequence of LP problems representing fixed-time maximum-range problems. At the predictor step, a linearized model is employed to obtain an optimal correction of the hoisting motion using LP. The minimum-time control problem is formulated by taking into account practical constraints on the maximum speeds of both the trolley and the load hoisting, as well as on the maximum force that can be applied to the trolley. Numerical results are presented and show the effectiveness of the method.
46

Konstrukční návrh portálové CNC frézky s posuvným stolem / Design of the gantry CNC milling machine with sliding table

Kolář, David January 2017 (has links)
This master’s thesis is focused on design of gantry CNC milling machine with sliding table. Thesis includes the review of components of this machines and comparsion of their options. Servo motors , ball screws and linear guides parameters are calculated. Also the suitable software and hardware for the machine control is chosen. Main parts of the machine were analysed using finite elements method. 3D model, drawings and documentation of machine build are included.
47

Jeřábová kočka hradidlového portálového jeřábu / Crane cat of a stoplog handling crane

Oliva, Petr January 2021 (has links)
This master´s thesis deals with the design of a crane trolley with the main and ancillary lift according to the specified parameters. The aim of the work is the elaboration of technical calculations and drawing documentation. The technical report deals with the design of lifting mechanisms, travelling mechanism and design and strength control of the crane frame. The drawing documentation includes a stroke assembly drawing, a travel assembly drawing, a frame steel structure assembly drawing, and a general crane cat assembly drawing.
48

Návrh paletizačního manipulátoru / Design of manipulator for palletization

Florián, Michal January 2010 (has links)
The matter of this master´s thesis is the construction of two variations of manipulator for palletization. The first solution is the derrick manipulator; the second one is the gantry manipulator. The aim of this master´s thesis is the comparison of both solutions from the point of view of the applicability, the cost and the demandingness of production. The productinon documentation will be elaborated for the selected solution.
49

Konstrukční návrh malé modelářské CNC frézky / Design of small hobby CNC milling machine

Večeř, Petr January 2016 (has links)
This thesis deals with the structural design of small model CNC milling machines. The work includes research modeller CNC milling machines available primarily on the Czech market, on whose basis are then selected the appropriate parameters for machine design. The thesis contains further structural calculations, selection of appropriate components, production drawings and 3D model that shows the final solution of constructed facility.
50

Optimization of operative planning in rail-road terminals

Bruns, Florian 16 September 2014 (has links)
Rail-road terminals are the chain links in intermodal rail-road transportation where standardized load units (containers, swap bodies and trailers) are transfered from trucks to trains and vice versa. We consider three subproblems of the operational planning process at rail-road terminals that terminal operators are facing in their daily operations. These are the optimization problems storage planning, load planning and crane planning. The aim of storage planning is to determine load unit storage positions for a set of load units in a partially filled storage area. Here, different restrictions like non-overlapping of stored load units have to be respected. The objective of storage planning is to minimize the total transportation costs and the number of load units that are not stored at the ground level. For the load planning we assume a scenario of overbooked trains. So, the aim of load planning is to assign a subset of the load units that are booked on a train to feasible positions on the wagons such that the utilization of the train is maximized and the costs for the handling in the terminal are minimized. For the feasible positioning of load units length and weight restrictions for the wagons and the train have to be respected. For the load planning of trains we consider a deterministic version and a robust approach motivated by uncertainty in the input data. The last considered optimization problem is the crane planning. The crane planning determines the transfer of the load units by crane between the different transportation modes. For each crane a working plan is computed which contains a subset of the load units that have to be handled together with individual start times for the transfer operations. For the load units which have to be transfered in the terminal, storage and load planning compute destination positions (inside the terminal). These destination positions are part of the input for the crane planning. The main objective of crane planning is to minimize the total length of the empty crane moves that have to be performed between successive transports of load units by the cranes. We provide MIP-models for all three subproblems of the operational planning process at rail-road terminals. For the storage and crane planning we also propose fast heuristics. Furthermore, we present and compare computational results based on real world data for all subproblems. The main contributions of this thesis concern load and storage planning. For the deterministic load planning we provide the first model that represents all practical constraints including physical weight restrictions. For the load planning we furthermore present robustness approaches for different practical uncertainties. For the storage planning we provide complexity results for different variants. For the practical setting we developed a heuristic which is able to compute solutions of high quality in a small amount of runtime.

Page generated in 0.0409 seconds