• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 21
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 240
  • 240
  • 122
  • 108
  • 53
  • 38
  • 37
  • 33
  • 33
  • 28
  • 25
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

Hammami, Mohamed Amen 11 1900 (has links)
Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation. This thesis is divided into three sections according to the application including: I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers. II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating. In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. In the second project, the coaxial electrospinning approach has been applied to fabricate smart core-shell nanofiber for controlled release of anti-corrosion material. Acetal-dextran was used as a pH controlled shell of the fibers and polyvinyl alcohol (PVA) as a hydrophilic core. Caffeine, as an anti-corrosion inhibitor was encapsulated in the fiber core to test its potential application as an anticorrosion coating. The almost negligible release was noticed at neutral pH. In acidic pH due to corrosion, the fibers quickly respond by releasing caffeine cargo. III- Gas separation: We describe the synthesis and application of novel ethylene-diamine-based PMO. The novel nanoparticles were homogeneously incorporated into polydimethylsiloxane to fabricate a MMMs thin layer on a porous polyacrylonitrile support. Our results prove that our PMOs can be used as nanofillers to enhance the CO2 selectivity of the PDMS polymer.
142

Thermal Tuning of Ethylene/Ethane Selective Cavities of Intrinsically Microporous Polymers

Salinas, Octavio 21 June 2016 (has links)
Ethylene is the most important organic molecule with regard to production volume. Therefore, the energy spent in its separation processes, based on old-fashioned distillation, takes approx. 33% of total operating costs. Membranes do not require significant thermal energy input; therefore, membrane processes may separate hydrocarbons cheaply and just as reliably as distillation columns. Olefin/paraffin separations are the future targets of commercial membrane applications, provided high-performing materials become available at reasonable prices. This thesis addresses the development of advanced carbon molecular sieve (CMS) membranes derived from intrinsically microporous polymers (PIMs). Chronologically, Chapter 4 of this work reports the evaluation of PIMs as potential ethylene/ethane selective materials, while Chapters 5 to 7 propose PIMs as carbonization precursors. The gravimetric sorption studies conducted in this work regarding both the polymers and their heated-derivatives revealed that this separation is entirely controlled by diffusion differences. The pristine polymers examined in this study presented BET surface areas from 80 to 720 m2g-1. Furthermore, the effect of using bromine-substituted PIM-polyimides elucidated a boost in ethylene permeability, but with a significant drop in selectivity. The hydroxyl functionalization of PIM-polyimides was confirmed as a valuable strategy to increase selectivity. Functionalized PMDA-HSBF is the most selective polyimide of intrinsic microporosity known to date (= 5.1) due to its hydrogen-bonded matrix. In spite of their novelty, pristine PIMs based on the spirobisindane moiety were not tight enough to distinguish between the 0.2 Å difference in diameter of the ethylene/ethane molecules. Therefore, they did not surpass the upper bound limit performance of known polymeric membranes. Nevertheless, the carbons derived from these polymers were excellent ethylene/ethane sieves by virtue of their narrow and tight pore distribution around the 3.6- 4.4 Å range. PIM-based carbons were typically 10 times more permeable than their corresponding low free-volume analogues treated after the weight-loss of the sample reached a plateau. Furthermore, carbons derived from PIM-6FDA-OH and PIM-6FDA at 800 ºC were as ethylene separating efficient as their lower free-volume counterparts. The pore sintering mechanism that takes place above 600 ºC during the carbonization procedure of these films reduced the entropic freedom of the molecules, as was observed from separation factors of up to 25 under pure-gas conditions and 2 bar of pressure— The best performing CMS membranes reported to date for ethylene/ethane separation. The mixed-gas separation of 1:1 binary ethylene/ethane mixtures revealed a significant decrease of the pure-gas measurements due to a carbon matrix dilation effect. This localized ultramicroporous dilation caused the ethane permeation rate to increase monotonically as the pressure rose to realistic operating values. Nevertheless, the CMS obtained from PIM-6FDA and PIM-6FDA-OH surpassed any diffusion-controlled polymer or carbon that has been reported to date.
143

Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane

Swaidan, Ramy J. 06 December 2016 (has links)
To date there exists a great deal of energetic and economic inefficiency in the separation of olefins from paraffins because the principal means of achieving industrial purity requirements is accomplished with very energy intensive cryogenic distillation. Mitigation of the severe energy intensity of the propylene/propane separation has been identified as one of seven chemical separations which can change the landscape of global energy use, and membranes have been targeted as an emerging technology because they offer scalability and lower capital and operating costs. The focus of this work was to evaluate a new direction of material development for the very industrially relevant propylene/propane separation using membranes. The objective was to develop a rational design approach for generating highly selective membranes using a relatively new platform of materials known as polyimides of intrinsic microporosity (PIM-PIs), the prospects of which have never been examined for the propylene/propane separation. Structurally, PIMs comprise relatively inflexible macromolecular architectures integrating contortion sites that help disrupt packing and trap microporous free volume elements (< 20 Å). To date most of the work reported in the literature on this separation is based on conventional low free volume 6FDA-based polyimides which in the best case show moderate C3H6/C3H8 selectivities (<20) with C3H6 permeabilities too low to garner industrial interest. Due to propylene and propane’s relatively large molecular size, we hypothesized that the use of more open structures can provide greater accessibility to the pores necessary to enhance membrane sieving and flux. It has been shown for numerous key gas separations that introduction of microporosity into a polymer structure can defy the notorious permeability/selectivity tradeoff curve and induce simultaneous boosts in both permeability and selectivity. The cornerstone approach to designing state of the art high performance PIM-PI membranes for the light gas separations involving maximizing the intra-segmental rigidity of the polymer chain was applied to the C3H6/C3H8 separation. A study regarding a stepwise maximization of intra-molecular rigidity and its effects on C3H6/C3H8 permeation was evaluated by conducting systematic structural modifications to high performance PIM-PIs. State of the art increases in performance were observed in pure-gas measurements as there were significant increases in C3H6/C3H8 selectivity and C3H6 permeability upon doing so. However, mixed-gas measurements showed that there were 65% losses in selectivity due to competitive sorption and mainly plasticization. Based on the conclusions drawn, a fundamental departure from conventional PIM design principles was used, instead emphasizing enhancing inter-chain interactions by introduction of a flexible diamine and functionalization with hydroxyl groups to attempt to immobilize the polymer chains. In doing so, the polymer chains may be able to pack more efficiently and upon sub-Tg annealing cause a microstructural reorganization to form a coplanarized configuration due to the combination of inter-chain charge transfer complexes (CTC) and hydrogen bonding networks. This approach successfully mitigated plasticization, but more importantly resulted in a tightening of the microstructure, especially in the ultra-microporous range (<7 Å) thereby yielding significant boosts in C3H6/C3H8 selectivity. Based on the PIM platform and novel polymer design approach thereof, the C3H6/C3H8 upper bound was thrust to new limits and led to the generation of the most selective solution processable polymers reported for the C3H6/C3H8 separation. Although the PIM platform has redefined the polymer upper bound, the permeability/selectivity tradeoff still endures, as the C3H6 permeabilities were on the order of 1 to 3.5 Barrer for the most selective polymers. To bridge that gap in permeability, several different approaches were taken. For the first time attempted for C3H6/C3H8 separation, high temperature heating of a PIM-PI to form thermally-rearranged and carbon molecular sieve membranes was employed. The TR membrane showed increased C3H6 permeability and about 50% losses in C3H6/C3H8 selectivity, while the CMS membrane formed at 600 oC showed modest gains in C3H6/C3H8 selectivity with significant improvements in C3H6 permeability. Finally, hybrid nanocomposite membranes incorporating a metal-organic framework structure into a PIM-PI matrix was used. ZIF-8, which has demonstrated high diffusive selectivities for C3H6/C3H8, was dispersed within the polymer, since previous work by the Koros group indicated that its incorporation into polyimide matrices can facilitate major improvements in both C3H6/C3H8 selectivity and C3H6 permeability compared to the respective neat polymer. Focus was directed towards attempting to improve polymer/nanoparticle adhesion by enhancing the interactions between the polymer and filler particles to mitigate the interfacial defects notorious in mixed-matrix membranes (MMM). To do so, ZIF-8 was dispersed into one of the best performing hydroxyl functionalized PIM-PI for the C3H6/C3H8 separation. The highest loaded mixed-matrix membrane in a glassy polymer to date of 65% (w/w) was achieved. The membranes showed pure-gas selectivities ranging from 34 with 10 Barrer at 30% loading to 43 with 38 Barrer at 65% loading. Strong performance and plasticization resistance were sustained in mixed-gas experiments even to feed pressures approaching the vapor pressure of the C3H6/C3H8 mixture, as selectivities well over 20 were achieved with high permeabilities, thereby demonstrating the potential commercial viability. Based on the work reported in this dissertation, we hope to help lay a framework to be able to tailor membrane performance and future membrane design to meet the demands of the different applications of the propylene/propane separation and hence show that there can be a marketplace for membranes in the separation. These include the debottlenecking of cryogenic distillation towers for production of polymer-grade propylene (99.5%) to reduce the associated extensive energy load, production of chemical-grade propylene (92-95% propylene), or for the recovery and recycling of olefins from reactor purges of petrochemical processes.
144

Odstraňování plynných kontaminantů z atmosféry / Gaseous atmospheric contaminants stripping

Kalivoda, Josef January 2010 (has links)
The Diploma thesis is devoted to the absorption of gases by the experimental gas scrubber. The main attention of the theoretical part is focused on the description of absorption, kinetics and the equilibrium between gas and liquid phase. Experimental part is concentrated on the absorption of carbon dioxide to deionized water in the experimental scrubber. Finally, experimental data are discussed.
145

Gas Sorption, Diffusion and Permeation in a Polymer of Intrinsic Microporosity (PIM-7)

Alaslai, Nasser Y. 08 May 2013 (has links)
The entire world including Saudi Arabia is dependent on natural gas to provide new energy supplies for the future. Conventional ways for gas separation are expensive, and, hence, it is very important to reduce the cost and lower the energy consumption. Membrane technology is a relatively new separation process for natural gas purification with large growth potential, specifically for off-shore applications. The economics of any membrane separation process depend primarily on the intrinsic gas permeation properties of the membrane materials. All current commercial membranes for natural gas separation are made from polymers, which have several drawbacks, including low permeability, moderate selectivity, and poor stability in acid gas and hydrocarbon environments. The recent development of polymeric materials called “polymers of intrinsic microporosity” (PIMs) provide a new class of high-performance membrane materials that are anticipated to be used in natural gas separation processes including, but not limited to, acid gas removal and separation of hydrocarbons from methane. PIM-7 is an excellent example of a material from the PIMs series for gas separation. It was selected for this work since it has not been extensively tested for its gas permeation properties to date. Specifically, sorption and mixed-gas permeation data were not available for PIM-7 prior to this work. Sorption isotherms of N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10 were determined over a range of pressures at 35 oC for PIM-7 using a custom-designed dual-volume pressure decay system. Condensable hydrocarbon gases, such as C3H8 and n-C4H10, show significantly higher solubility than the other less condensable gas of the test series due to their high affinity to the polymer matrix. Dual-mode sorption model parameters were determined from the sorption isotherms. Henry’s law solubility, Langmuir capacity constant and the affinity constant increased with gas condensability. Permeability coefficients of He, H2, N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10 were measured at 35 oC and 2 atm feed pressure using a home-made constant-volume/variable pressure pure-gas permeation system. Hydrocarbon-induced plasticization of PIM-7 was confirmed by measuring the permeability coefficients of C3H8 and n-C4H10 as function of pressure at 35 oC. Diffusion coefficients were calculated from the permeability and solubility data at 2 atm for all penetrants tested and as function of pressure for C3H8 and n-C4H10; the values for C3 and C4 increased significantly with pressure because of plasticization. Physical aging was studied by measuring the permeability coefficients of a number of gases in fresh and aged films. Mixed-gas permeation tests were performed for a feed mixture of 2 vol% n-butane and 98 vol% methane. Based on BET surface area measurements using N2 as a probe molecule, PIM-7 is a microporous polymer (S = 690 m2/g) and it was expected to exhibit selectivity for n-butane over methane, as previously observed for other microporous polymers, such as PIM-1 and PTMSP. Surprisingly, PIM-7 is more permeable to methane than n-butane and exhibits a mixed-gas methane/n-butane selectivity of up to 2.3. This result indicates that the micropore size in PIM-7 is smaller than that in other PIMs materials. Consequently, PIM-7 is not a suitable candidate membrane material for separation of higher hydrocarbons from methane.
146

Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

Barankova, Eva 06 1900 (has links)
Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment (such as temperature lower than room temperature and synthesis times shorter than 1 hour) on ZIF-8 membrane properties was evaluated. We could prepare one of the thinnest (around 200 nm) yet selective ZIF-8 films reported.
147

Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

Alhazmi, Abdulrahman 05 1900 (has links)
The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.
148

Studies on a thermal method of gas separation with porous membrane / 多孔膜における熱を用いた気体分離に関する研究

Nakaye, Shoeji 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19686号 / 工博第4141号 / 新制||工||1639(附属図書館) / 32722 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 稲室 隆二, 教授 青木 一生講師杉元 宏 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
149

A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic Frameworks

Rigdon, Katharine Harp January 2019 (has links)
No description available.
150

Interfacially Polymerized Thin-Film Composite Membranes for Gas Separation Using Aliphatic Alcohols as Polar Phase

Eromosele, Praise 06 1900 (has links)
Membrane processes have received growing attention due to their low energy consumption and ease of operation. Thin-film composite reverse osmosis membranes based on polyamides are the most widely applied commercial membranes, because of their high flux and selectivity. However, their application for gas separation processes is still limited. This is the due to the presence of defects in the membrane when in the dry state. Traditionally, thin-film composite membranes are made by interfacial polymerization between a polar (aqueous) phase and a non-polar (organic) phase. The most commonly applied thin-film composite membranes are made by dissolving m-phenylene diamine in the aqueous phase and trimesoyl chloride in the organic phase. This work investigated the possibility of fabricating thin-film composite membranes when an aliphatic alcohol (methanol, ethanol or isopropanol) is used as the polar phase. This is further extended to examining the ability of a PDMS coating to plug the defects in such layers. The effects of temperature and support type on the membrane performance were also studied. Solubility tests were conducted to determine the solubility limit of commercial and in-house fabricated amine monomers in water, methanol, ethanol and isopropanol. Water-insoluble monomers were found to be soluble in ethanol and methanol. Gas permeation tests were conducted on membranes made using water, methanol, ethanol and isopropanol as the polar phase. The results showed that the membranes produced by aliphatic alcohols had higher selectivities. The highest H2/CO2 selectivity of ~ 26 was observed in the ethanol-based membranes when they were coated with PDMS and tested at 80 C. It was confirmed that PDMS is able to plug the defects in the membrane. Membranes made on the polysulfone support were found to have higher permeance and comparable selectivity relative to the membranes made on the polyacrylonitrile supports. It was also found that a change in the polar phase solvent is able to alter the morphology of the membranes. SEM micrographs showed clear differences in the surface structure of each membrane. The average thickness values obtained from ellipsometry measurements showed a correlation with the interface miscibility. The thickest membrane corresponded to the most miscible interface (IPA/Isopar).

Page generated in 0.1368 seconds