• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CFD Simulation of Electrostatic Charging in Gas-Solid Fluidized Beds: Model Development Through Fundamental Charge Transfer Experiments

Chowdhury, Fahad Al-Amin 31 March 2021 (has links)
The triboelectrification of particles by contact or frictional charging is known to be an operational challenge in the polyolefin industry. Particularly in polyethylene production, gas-solid fluidized bed reactors are known to be susceptible to electrostatic charging due to the rigorous mixing of polyethylene and catalyst particles in a dry environment. The presence of charged particles coupled with a highly exothermic polymerization reaction results in sheet formation on the reactor walls. This behaviour can decrease reactor performance and obstruct the system, consequently forcing a shutdown for reactor maintenance. The generation of electrostatic charge in fluidized beds has been widely studied throughout the years; however, limited attention has been paid to the simulation and modeling of this phenomenon. Since it is difficult to accurately quantify the charge generation in industrial fluidized beds, developing an electrostatic model based on material properties would considerably aid in providing insight on this occurrence and its effects. A computational fluid dynamics (CFD) model that incorporates this electrostatic model can then be used as a predictive tool in research and development. Simulating electrostatic charging in gas-solid fluidized beds would be a cost-effective alternative to running experiments on them, especially for industrial-scale test runs. In this thesis, an electrostatic charging model was developed to be used in conjunction with an Euler-Euler Two-Fluid CFD model to simulate triboelectrification and its effects in gas-solid flows. The electrostatic model was first established for mono-dispersed gas-particle flows and was validated using past experimental findings of particle charging for gas-solid fluidization runs. With the goal of providing a realistic representation of gas-solid fluidization of polyethylene resins with a wide particle-size distribution, the electrostatic model was extended to consider bi-dispersed particulate flow systems. Simulation results using this model show the prediction of bipolar charging when the particles have different sizes, even though they are made of the same material. This phenomenon is analyzed and is shown to be driven by the electric field produced by the charge accumulated on the particles. Experimental studies of particle-wall and particle-particle contact charging were performed to investigate the electrostatic and mechanical parameters that are crucial for modeling the magnitude and direction of charge transfer in gas-solid flow systems. Particle-wall contact charging due to single and repeated collisions were tested with various particles, including commercial linear low-density polyethylene, to determine their rates of charging as well as their charge saturation limits when colliding with a metal surface. Plotting the charge saturation value of the particles against their respective surface areas revealed a linear trend which could be used to calculate the charge saturation of the particle for a given particle size. Additional particle-wall charging studies include the effect of initial charge, collision frequency, particle type, impact angle, impact velocity and the presence of impurities on particle charging. To study particle-particle contact charging, a novel apparatus was designed, built, and tested to determine the magnitude and direction of charge transfer due to the individual particle-particle collisions of insulator particles. This apparatus was the first of its kind, and it ensured that the measured charge transfer for each experimental trial was solely due to the binary collision between the particles. It was observed that the direction of charge transfer in identical particle collisions is not dictated by the net initial charges of the particles, but the localized charge difference at the particles’ contacting surface. Moreover, particle-particle collisions of nylon particles of varying sizes confirmed the bipolar charging phenomena, where the direction of charging was dictated by the relative size of the colliding particles. These findings, among others, contradict the charge transfer behavior predicted by electrostatic charging models currently proposed for particle-particle collisions. As such, it was concluded that an empirically accurate charge transfer model needs to be established to simulate the electrostatic charging of particles in poly-dispersed gas-solid flow systems.
2

The Study of Reactor Wall Fouling in Gas-solid Fluidized Beds Caused by Electrostatic Charge Generation

Sowinski, Andrew 25 September 2012 (has links)
Electrostatic charge generation is unavoidable in gas-solid fluidized beds due to the repeated particle-particle and particle reactor wall contacts and separations. In industrial operations such as in polyethylene production this phenomenon results in the significant problem of reactor wall fouling, known as “sheeting”. To better understand the underlying charging mechanisms involved in gas-solid fluidized beds in an attempt to eliminate and/or reduce the effect a novel on-line electrostatic charge measurement technique was developed, which concurrently provided information on both the degree of fluidized bed electrification and reactor wall fouling. A Faraday cup replaced the windbox of the fluidized bed while another cup was placed at the top of the column. The distributor plate was uniquely designed for the systematic removal of bed particles and those adhered to the column wall for their charge measurement with the bottom Faraday cup, and the charge of the entrained particles was measured by the top Faraday cup. This is the first study which allowed the charge measurement of particles in the bulk of the bed, particles adhered to the column wall, and those entrained, simultaneously. In addition, this method uniquely permitted the evaluations of the degree of reactor wall fouling under different operating conditions. An experimental program was designed to investigate the influence of bed hydrodynamics (fluidizing gas velocity and particle size), fluidization column wall material, and the addition of different solid additives. Fluidizing particles were polyethylene resin from an industrial reactor. Bi-polar charging was observed where the elutriated particles were oppositely charged compared to those in the bulk of the bed and those adhered to the column wall. Particles within the wall coating were also found to be bi-polarly charged. With the resin tested as received, a certain sized particles (350-575 µm) adhered to the column wall. The specific charge of the particles near the column wall was found not to be a definite indication of the amount of wall fouling. Increasing the gas velocity promoted wall fouling and elevated the charge density of the particles within both bubbling and slugging flow regimes. The effect of solid additive injection was examined with two static drivers known to reduce wall fouling in industrial operations, a deactivated catalyst, and the catalyst support. It was found that the catalyst promoted, while one of the static drivers reduced wall fouling.
3

Development of Chemical Looping Combustion Technology for Energy Production and Sulfur Capture - Experimental Aspect, Process Modeling, Hydrodynamic Studies

Pottimurthy, Yaswanth January 2021 (has links)
No description available.
4

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
5

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
6

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
7

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda January 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
8

Study of Electrostatic Charging and Particle Wall Fouling in a Pilot-scale Pressurized Gas-Solid Fluidized Bed up to Turbulent Flow Regime

Song, Di January 2017 (has links)
In gas-solid fluidized beds, the generation of electrostatic charges due to continuous contacts between fluidizing particles, and the particles and the fluidization vessel wall, is unavoidable. Industrial operations, such as the production of polyethylene, are susceptible to significant operational challenges caused by electrostatics including reactor wall fouling, a problem known as “sheeting”. The formation of particle sheets can require shutdown periods for clean-up which results in significant economic losses. To gain a better understanding of the underlying mechanisms of electrostatic charging in gas-solid fluidized beds, in an attempt to eliminate or minimize this problem, a pilot-scale pressurized gas-solid fluidization system was designed and built, housing an online electrostatic charge measurement technique consisting of two Faraday cups. The system permits the study of the degree of particle wall fouling at pressures and temperatures up to 2600 kPa and 100°C, respectively, and gas velocities up to 1 m/s (covering a range including turbulent flow regime). The system also allowed, for the first time, the measurement of the fluidizing particles’ mass, net charge and size distribution in various regions of the bed, especially those related to the wall coating under the industrially relevant operating conditions of high pressures and gas velocities. Experimental trials were carried out using polyethylene resin received from commercial reactors to investigate the influence of pressure and gas velocity on the bed hydrodynamics and in turn, the degree of bed electrification. Mechanisms for particle charging, migration and adherence to the column wall were proposed. The size distribution of the gas bubbles shifted towards smaller bubbles as the operating pressure was raised. Thus, higher pressures lead to greater mixing within the bulk of the bed and resulted in a higher degree of particle wall fouling. Moreover, the extent of wall fouling increased linearly with the increase in gas velocity and as the bed transitioned to turbulent regime, due to the increase in particle-wall contacts. Bipolar charging was observed especially within the wall coating with smaller particles being negatively charged. Overall, particle-wall contacts generated negatively charged particles resulting in a net negative charge in the bed, whereas particle-particle contacts generated positively and negatively charged particles resulting in no net charge when entrainment was negligible. The formation of the wall layer and its extent was influenced by the gravitational and drag forces balancing the image force and Coulomb forces (created by the net charge of the bed and the metallic column wall as the attraction between oppositely charged particles).
9

Gas-Solid Fluidization: ECVT Imaging and Mini-/Micro-Channel Flow

Wang, Fei January 2010 (has links)
No description available.

Page generated in 0.1164 seconds