Spelling suggestions: "subject:"gas"" "subject:"gasb""
1 |
Long Non-Coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIVNguyen, Lam N. T., Nguyen, Lam N., Zhao, Juan, Schank, Madison, Dang, Xindi, Cao, Dechao, Khanal, Sushant, Chand Thakuri, Bal K., Lu, Zeyuan, Zhang, Jinyu, Li, Zhengke, Morrison, Zheng D., Wu, Xiao Y., El Gazzar, Mohamed, Ning, Shunbin, Wang, Ling, Moorman, Jonathan P., Yao, Zhi Q. 12 March 2021 (has links)
T cells are critical for the control of viral infections and T cell responses are regulated by a dynamic network of non-coding RNAs, including microRNAs (miR) and long non-coding RNAs (lncRNA). Here we show that an activation-induced decline of lncRNA growth arrest-specific transcript 5 (GAS5) activates DNA damage response (DDR), and regulates cellular functions and apoptosis in CD4 T cells derived from people living with HIV (PLHIV) via upregulation of miR-21. Notably, GAS5-miR21-mediated DDR and T cell dysfunction are observed in PLHIV on antiretroviral therapy (ART), who often exhibit immune activation due to low-grade inflammation despite robust virologic control. We found that GAS5 negatively regulates miR-21 expression, which in turn controls critical signaling pathways involved in DNA damage and cellular response. The sustained stimulation of T cells decreased GAS5, increased miR-21 and, as a result, caused dysfunction and apoptosis in CD4 T cells. Importantly, this inflammation-driven T cell over-activation and aberrant apoptosis in ART-controlled PLHIV and healthy subjects (HS) could be reversed by antagonizing the GAS5-miR-21 axis. Also, mutation of the miR-21 binding site on exon 4 of GAS5 gene to generate a GAS5 mutant abolished its ability to regulate miR-21 expression as well as T cell activation and apoptosis markers compared to the wild-type GAS5 transcript. Our data suggest that GAS5 regulates TCR-mediated activation and apoptosis in CD4 T cells during HIV infection through miR-21-mediated signaling. However, GAS5 effects on T cell exhaustion during HIV infection may be mediated by a mechanism beyond the GAS5-miR-21-mediated signaling. These results indicate that targeting the GAS5-miR-21 axis may improve activity and longevity of CD4 T cells in ART-treated PLHIV. This approach may also be useful for targeting other infectious or inflammatory diseases associated with T cell over-activation, exhaustion, and premature immune aging.
|
2 |
Regulation of CD4 T Cell Functions by ncRNA-mediated Signaling Pathways during Chronic Viral InfectionsNguyen, Lam 01 May 2024 (has links) (PDF)
CD4 T cell homeostasis and competency are critical for the effectiveness of antiviral immunity. However, CD4 T cells derived from people living with HIV (PLWH) and individuals with chronic HCV infection often exhibit an inflammaging phenotype, evidenced by persistent inflammation, immune activation, exhaustion, senescence, and cellular apoptosis. Despite intensive investigations, the molecular mechanisms underlying CD4 T cell dysfunction in antiretroviral therapy (ART)-controlled PLWH and HCV-infected patients remain poorly understood. By investigating the roles of non-coding (nc)RNA transcripts in regulating the functions of CD4 T cells derived from PLWH and HCV-infected patients, we demonstrated that long non-coding (lnc)RNA - growth arrest-specific transcript 5 (GAS5) - is downregulated and plays a crucial role in regulating CD4 T cell functions through and beyond the microRNA (miR)-21-mediated signaling network. Our data suggest that disrupting the GAS5-miR21 axis may restore CD4 T cell homeostasis and competency during latent HIV infection and prevent premature CD4 T cell aging or immune senescence. Moreover, our results also showed that TRF2, a component of the shelterin complex maintaining the integrity of telomeres, is post-transcriptionally inhibited, which is one of the major forces driving cellular dysregulation in CD4 T cells from PLWH and HCV patients. Importantly, our study identified miR-23a as the key regulator of TRF2 translational expression by targeting its 3’UTR in CD4 T cells and that targeting miR-23a may restore the TRF2 protein level, and thereby reconstitute CD4 T cell homeostasis and competency to rescue CD4 T cells from premature aging and immunosenescence during latent HIV infection. The findings from these studies improved our understanding and knowledge of how ncRNA-mediated networks regulate the functions of CD4 T cells during chronic viral (HIV and HCV) infections. Understanding such mechanisms is important for developing therapeutic approaches to reverse the inflammaging phenotype observed in CD4 T cells from ART-controlled PLWH and chronically HCV-infected patients to improve their immunological functions and quality of life.
|
Page generated in 0.0392 seconds