• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 27
  • 12
  • 10
  • 7
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 219
  • 46
  • 41
  • 37
  • 30
  • 23
  • 18
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Cholinergic circuitry in auditory brainstem

Motts, Susan D. 22 November 2010 (has links)
No description available.
112

Mindfulness Meditation Reduces Stress-Related Inhibitory Gating Impairment

Atchley, Rachel M. 17 June 2014 (has links)
No description available.
113

The role of the oxytocin system in the pathophysiology of schizophrenia-like behavior

Rich, Megan Elizabeth 27 April 2015 (has links)
No description available.
114

Computer Simulation Studies of CLC Chloride Channels and Transporters

Mahankali, Uma January 2006 (has links)
No description available.
115

Fault Modeling and Detection for Gated-Ground SRAM

Li, Ke 12 April 2010 (has links)
No description available.
116

An Investigation into the Effects of Gating in Artificial Host Systems

Rieth, Stephen E. 08 September 2011 (has links)
No description available.
117

Time domain antenna pattern measurements

Predoehl, Andrew M. 07 November 2008 (has links)
Multipath on far-field antenna ranges causes distortion of antenna pattern measurements: The multi path components have differing path lengths and hence can be separated by illuminating the antenna under test with short-duration pulses. Alternatively, antenna measurements can be made in the frequency domain, and the Fourier transform can be used to relate the frequency-domain measurements to the antenna's time-domain response. The interference then can be removed with a time-domain gate, and transformed back into the frequency domain to yield improved CW antenna patterns. Virginia Tech has recently completed a major upgrade of their far-field antenna range and implemented a system to perform this data collection and data processing. This thesis describes the principles and implementation of the time-domain processing part of the system. Further, it demonstrates the validity of the method by showing the improvements in pattern measurement that have been achieved with the new system. / Master of Science
118

Emerging Power-Gating Techniques for Low Power Digital Circuits

Henry, Michael B. 29 November 2011 (has links)
As transistor sizes scale down and levels of integration increase, leakage power has become a critical problem in modern low-power microprocessors. This is especially true for ultra-low-voltage (ULV) circuits, where high levels of leakage force designers to chose relatively high threshold voltages, which limits performance. In this thesis, an industry-standard technique known as power-gating is explored, whereby transistors are used to disconnect the power from idle portions of a chip. Present power-gating implementations suffer from limitations including non-zero off-state leakage, which can aggregate to a large amount of wasted energy during long idle periods, and high energy overhead, which limits its use to long-term system-wide sleep modes. As this thesis will show however, by vastly increasing the effectiveness of power-gating through the use of emerging technologies, and by implementing aggressive hardware-oriented power-gating policies, leakage in microprocessors can be eliminated to a large extent. This allows the threshold voltage to be lowered, leading to ULV microprocessors with both low switching energy and high performance. The first emerging technology investigated is the Nanoelectromechnical-Systems (NEMS) switch, which is a CMOS-compatible mechanical relay with near-infinite off-resistance and low on-resistance. When used for power-gating, this switch completely eliminates off-state leakage, yet is compact enough to be contained on die. This has tremendous benefits for applications with long sleep times. For example, a NEMS-power-gated architecture performing an FFT per hour consumes 30 times less power than a transistor-power-gated architecture. Additionally, the low on-resistance can lower power-gating area overhead by 36-83\%. The second technology targets the high energy overhead associated with powering a circuit on and off. This thesis demonstrates that a new logic style specifically designed for ULV operation, Sense Amplifier Pass Transistor Logic (SAPTL), requires power-gates that are 8-10 times smaller, and consumes up to 15 times less boot-up energy, compared to static-CMOS. These abilities enable effective power-gating of an SAPTL circuit, even for very short idle periods. Microprocessor simulations demonstrate that a fine-grained power-gating policy, along with this drastically lower overhead, can result in up to a 44\% drop in energy. Encompassing these investigations is an energy estimation framework built around a cycle-accurate microprocessor simulator, which allows a wide range of circuit and power-gating parameters to be optimized. This framework implements two hardware-based power-gating schedulers that are completely invisible to the OS, and have extremely low hardware overhead, allowing for a large number of power-gated regions. All together, this thesis represents the most complete and forward-looking study on power-gating in the ULV region. The results demonstrate that aggressive power-gating allows designers to leverage the very low switching energy of ULV operation, while achieving performance levels that can greatly expand the capabilities of energy-constrained systems. / Ph. D.
119

Water and Ions Dynamics in Modified Hydrophobic Si3N4 Nanopores for Protein Sequencing

Tabasso, Fabrizio January 2024 (has links)
This thesis presents a computational study of water and ion dynamics in modified hydrophobic silicon nitride (Si3N4) nanopores, aimed at enhancing protein sequenc- ing technologies. By employing molecular dynamics (MD) simulations, the research investigates the wetting-dewetting behavior within nanopores as an indirect measure of amino acid residue hydrophobicity, focusing on how post-translational modifications (PTMs) of lysine, particularly the acetylation of lysine residues, influence nanopore hydrophobicity and ionic conductance. The study reveals that nanopore radius and hydrophobicity significantly affect water and ion permeation, with smaller nanopores oscillating between open and closed states, while larger ones remain open.  Using umbrella sampling and the Weighted Histogram Analysis Method (WHAM), the potential of mean force (PMF) for potassium (K+), chloride (Cl−), and water within the nanopores was determined, showing distinct PMF profiles based on lysine and acetyl- lysine presence. The modulation of ionic currents as a tool for protein sequencing was explored, demonstrating that different amino acid residues affect ionic currents by par- tially blocking the pore and altering local permeability, thereby enabling differentiation based on size, shape, charge, and hydrophobicity.  The findings suggest that silicon nitride pore hydrophobicity can be tailored for nanopore sequencing, correlating changes in ionic currents with amino acid residue translocation. This research enhances the understanding of interactions within nanopore environments, potentially leading to more precise nanopore-based sequencing methods.
120

Head-of-Line Blocking Reduction in Power-Efficient Networks-on-Chip

Escamilla López, José Vicente 03 November 2017 (has links)
Tesis por compendio / Nowadays, thanks to the continuous improvements in the integration scale, more and more cores are added on the same chip, leading to higher system performance. In order to interconnect all nodes, a network-on-chip (NoC) is used, which is in charge of delivering data between cores. However, increasing the number of cores leads to a significant power consumption increase, leading the NoC to be one of the most expensive components in terms of power. Because of this, during the last years, several mechanisms have been proposed to address the NoC power consumption by means of DVFS (Dynamic Voltage and Frequency Scaling) and power-gating strategies. Nevertheless, improvements achieved by these mechanisms are achieved, to a greater or lesser extent, at the cost of system performance, potentially increasing the risk of saturating the network by forming congested points which, in turn, compromise the rest of the system functionality. One side effect is the creation of the "Head-of-Line blocking" effect where congested packets at the head of queues prevent other non-blocked packets from advancing. To address this issue, in this thesis, on one hand, we propose novel congestion control techniques in order to improve system performance by removing the "Head-of-Line" blocking effect. On the other hand, we propose combined solutions adapted to DVFS in order to achieve improvements in terms of performance and power. In addition to this, we propose a path-aware power-gating-based mechanism, which is capable of detecting the flows sharing buffer resources along data paths and perform to switch them off when not needed. With all these combined solutions we can significantly reduce the power consumption of the NoC when compared with state-of-the-art proposals. / Hoy en día, gracias a las mejoras en la escala de integración cada vez se integran más y más núcleos en un mismo chip, mejorando así sus prestaciones. Para interconectar todos los nodos dentro del chip se emplea una red en chip (NoC, Network-on-Chip), la cual es la encargada de intercambiar información entre núcleos. No obstante, aumentar el número de núcleos en el chip también conlleva a su vez un importante incremento en el consumo de la NoC, haciendo que ésta se convierta en una de las partes más caras del chip en términos de consumo. Por ello, en los últimos años se han propuesto diversas técnicas de ahorro de energía orientadas a reducir el consumo de la NoC mediante el uso de DVFS (Dynamic Voltage and Frequency Scaling) o estrategias basadas en "power-gating". Sin embargo, éstas mejoras de consumo normalmente se obtienen a costa de sacrificar, en mayor o menor medida, las prestaciones del sistema, aumentado potencialmente así el riesgo de saturar la red, generando puntos de congestión que, a su vez, comprometen el rendimiento del resto del sistema. Un efecto colateral es el "Head-of-Line blocking", mediante el que paquetes congestionados en la cabeza de la cola impiden que otros paquetes no congestionados avancen. Con el fin de solucionar este problema, en ésta tesis, en primer lugar, proponemos técnicas novedosas de control de congestión para incrementar el rendimiento del sistema mediante la eliminación del "Head-of-Line blocking", mientras que, por otra parte, proponemos soluciones combinadas adaptadas a DVFS con el fin de conseguir mejoras en términos de rendimiento y energía. Además, proponemos una técnica de "power-gating" orientada a rutas de datos, la cual es capaz de detectar flujos de datos compartiendo recursos a lo largo de rutas y apagar dichos recursos de forma dinámica cuando no son necesarios. Con todas éstas soluciones combinadas podemos reducir el consumo de energía de la NoC en comparación con otras técnicas presentes en el estado del arte. / Hui en dia, gr\`acies a les millores en l'escala d'integraci\'o, cada vegada s'integren m\'es i m\'es nuclis en un mateix xip, la qual cosa millora les seues prestacions. Per tal d'interconectar tots els nodes dins el xip es fa \'us d'una Xarxa en Xip (NoC; Network-on-Chip), la qual \'es l'encarregada d'intercanviar informaci\'o entre els nuclis. No obstant aix\`o, incrementar el nombre de nuclis en el xip tamb\'e comporta un important augment en el consum de la NoC, la qual cosa fa que aquesta es convertisca en una de les parts m\'es costoses del xip en termes de consum. Per aix\`o, en els \'ultims anys s'han proposat diverses t\`ecniques d'estalvi d'energia orientades a reduir el consum de la NoC mitjançant l'\'us de DVFS (Dynamic Voltage and Frequency Scaling) o estrat\`egies basades en ``power-gating''. Malgrat aix\`o, aquestes millores en les prestacions normalment s'obtenen a costa de sacrificar, en major o menor mesura, les prestacions del sistema i augmenta aix\'i el risc de saturar la xarxa al generar-se punts de congesti\'o, que al mateix temps, comprometen el rendiment de la resta del sistema. Un efecte col-lateral \'es el ``Head-of- Line blocking'', mitjançant el qual, els paquets congestionats al cap de la cua, impedixen que altres paquets no congestionats avancen. A fi de solucionar eixe problema, en aquesta tesi, en primer lloc, proposem noves t\`ecniques de control de congesti\'o amb l'objectiu d'incrementar el rendiment del sistema per mitj\`a de l'eliminaci\'o del ``Head-of- Line blocking'', i d'altra banda, proposem solucions combinades adaptades a DVFS amb la finalitat d'aconseguir millores en termes de rendiment i energia. A m\'es, proposem una t\`ecnica de ``power-gating'' orientada a rutes de dades, la qual \'es capa\c c de detectar fluxos de dades al compartir recursos al llarg de les rutes i apagar eixos recursos de forma din\`amica quan no s\'on necessaris. Amb totes aquestes solucions combinades podem reduir el consum d'energia de la NoC en comparaci\'o amb altres t\`ecniques presents en l'estat de l'art. / Escamilla López, JV. (2017). Head-of-Line Blocking Reduction in Power-Efficient Networks-on-Chip [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90419 / Compendio

Page generated in 0.0794 seconds