• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 147
  • 31
  • 30
  • 27
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 710
  • 231
  • 191
  • 116
  • 114
  • 113
  • 99
  • 98
  • 70
  • 68
  • 63
  • 59
  • 53
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Emergence of Space-Times from Gauge Theories in Gauge/Gravity Duality / ゲージ/重力双対におけるゲージ理論からの時空の創発

Asano, Yuhma 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18786号 / 理博第4044号 / 新制||理||1582(附属図書館) / 31737 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 教授 畑 浩之, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
162

In-Situ Creep Monitoring Using Directional Potential Drop Sensors

Madhi, Elhoucine January 2010 (has links)
No description available.
163

QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman Gauge

Santos, Elton Márcio da Silva 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
164

QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman Gauge

Elton Márcio da Silva Santos 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
165

Collector size effect on the measurement of applied water depth from irrigation systems

Wiens, Scott Wade January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Danny H. Rogers / Center pivot irrigation systems are used in crop production across the state of Kansas. The American Society of Agricultural and Biological Engineers (ASABE) standard on uniformity testing of a center pivot system calls for collectors to be used to measure the water depth emitted by the irrigation system. The standard was designed without specially considering the low pressure sprinklers now commonly used on center pivot systems; the recommended collectors may not accurately measure the applied depth from these sprinklers. The collector size effect on measured water depth and measured depth variability was studied for spinning plate, fixed plate, and wobbling plate sprinkler systems. Five different collector sizes (C2 (5.5 cm), C4 (10.0 cm), C6 (14.8 cm), C8 (20.0 cm), and C10 (27.4 cm)) were studied using four 5x5 Latin squares. Each collector’s water depth was measured and statistically analyzed. Two analysis of variance (ANOVA) tests of the collector size effect were reported. Past experimental results were compared to this experiment’s results. The ANOVA for the measured water depth reported no collector size effect for the spinning plate and wobbling plate systems. The ANOVA of the variability of measured depths showed significant differences between collector sizes for the spinning plate system but not for the wobbling plate system. Previous studies of spinning plate and wobbling plate systems reported acceptable variability for all collector sizes. Although some collector sizes measured significantly different mean depths, the numerical difference in mean depths was small. Any studied collector size could be used to measure the water depth of wobbling plate systems, but the C4 collector is ideal. C4 and C6 collectors are ideal for measuring spinning plate systems. Significant differences between measured depths were reported for the fixed plate system. The C10 measured significantly lower water depths than all other collectors, and the C4 collector measured lower depths than the C2 and C8 collectors. The variability of mean depths was similar and high for all collector sizes. Previous experiments also indicated that different collector sizes measured different depths and had high variability of depth measurements for the fixed plate sprinkler systems. The distinct stream pattern provides a challenge for accurately measuring the water depth with these collector sizes; other methods of measuring uniformity should be considered for fixed plate sprinklers.
166

General gauge invariant theory of transport in mesoscopic systems

Wang, Baigeng. January 1999 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
167

Semi-Trailer Structural Failure Analysis Using Finite Element Method

Baadkar, Chetan Chandrakant January 2010 (has links)
This project is centred on an ongoing trailer component failure problem at the STEELBRO New Zealand Ltd due to cracks. In this research the problem has been systematically approached using ANSYS finite element analysis software. The approach involves investigation of the problem and structural analysis of the trailer subjected to two types of service conditions. The service conditions are simulated in ANSYS which involved CAD and finite element modelling of the trailer, and then the finite element model is validated experimentally by strain gauges and geometrically by ANSYS element shape checking capability. The finite element model subjected to static structural analysis confirmed the crack locations and indicated the cause of the failure. Further fatigue analysis on one of the loading condition revealed it’s potential to cause failure at the crack locations. Finally, this research concludes with a proposal of revised component design to overcome the failure at the crack locations and recommendations for further analysis on the trailer.
168

Localization, supersymmetric gauge theories and toric geometry

Winding, Jacob January 2017 (has links)
Gauge theories is one of the most pervasive and important subject of modern theoretical physics, and there are still many things about them we do not understand. In particular dealing with strongly coupled theories where normal perturbative techniques do not apply is a fundamental open problem. In this thesis, we study a particular class of toy-models that have supersymmetry, which makes them much easier to deal with. We employ the mathematical technique of localization, which for supersymmetric theories lets us evaluate certain path integrals exactly and for any value of the coupling. This is used to study the 5d N=1 theories placed on toric Sasaki-Einstein manifolds and compute their partition functions, finding that they factorize into a product of contributions from each closed Reeb orbit of the manifold. This computation leads us to define two new hierarchies of special functions associated to these manifolds, and we study their properties. Finally, we use the 5d N=1 theories to construct new 4d N=2 theories on a large class of curved backgrounds. These theories have some interesting features, such as supporting both instantons and anti-instantons, and having a position-dependent complexified coupling constant.
169

Semiclassical monopole calculations in supersymmetric gauge theories

Davies, N. Michael January 2000 (has links)
We investigate semiclassical contributions to correlation functions in N = 1 supersymmetric gauge theories. Our principal example is the gluino condensate, which signals the breaking of chiral symmetry, and should be exactly calculable, according to a persymmetric non-renormalisation theorem. However, the two calculational approaches previously employed, SCI and WCI methods, yield different values of the gluino condensate. We describe work undertaken to resolve this discrepancy, involving a new type of calculation in which the space is changed from R(^4) to the cylinder R(3) x S(1) This brings control over the coupling, and supersymmetry ensures that we are able to continue to large radii and extract answers relevant to R(^4). The dominant semiclassical configurations on the cylinder are all possible combinations of various types of fundamental monopoles. One specific combination is a periodic instanton, so monopoles are the analogue of the instanton partons that have been conjectured to be important at strong coupling. Other combinations provide significant contributions that are neglected in the SCI approach. Monopoles are shown to generate a superpotential that determines the quantum vacuum, where the theory is confining. The gluino condensate is calculated by summing the direct contributions from all fundamental monopoles. It is found to be in agreement with the WCI result for any classical gauge group, whereas the values for the exceptional groups have not been calculated before. The ADS superpotential, which describes the low energy dynamics of matter in a supersymmetric gauge theory, is derived using monopoles for all cases where instantons do not contribute. We report on progress made towards a two monopole calculation, in an attempt to quantify the missed contributions of the SCI method. Unfortunately, this eventually proved too complicated to be feasible.
170

Vector-like description of SU (2) matrix-valued quantum field theories

Johnson, Celeste Irene 05 1900 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2015. / The AdS/CFT correspondence asserts a duality between non-Abelian gauge theories and quantum theories of gravity, established by the value of the gauge coupling . Gerard t'Hooft found that the large N0 limit in non-Abelian Yang-Mills gauge theories results in a planar diagram simpli cation of the topological expansion. In this dissertation, SU(2) gauge theories are written in terms of vector models (making use of collective eld theory to obtain an expression for the Jacobian), a saddle point analysis is performed, and the large N limit taken. Initially this procedure is done for gauge theories dimensionally reduced on T4 and R T3, and then attempted for the full eld theory (without dimensional reduction). In each case this results in an expression for the non-perturbative propagator. A nite volume must be imposed to obtain a gap equation for the full eld theory; directives for possible solutions to this di culty are discussed.

Page generated in 0.0413 seconds