Spelling suggestions: "subject:"generalized disjointness"" "subject:"generalized disjointedness""
1 |
Contributions to Lattice-like Properties on Ordered Normed SpacesTzschichholtz, Ingo 23 July 2006 (has links) (PDF)
Banachverbände spielen sowohl in der Theorie als auch in der Anwendung von geordneten normierten Räume eine bedeutende Rolle. Einerseits erweisen sich viele in der Praxis relevanten Räume als Banachverbände, andererseits ermöglichen die Vektorverbandsstruktur und die enge Beziehung zwischen Ordnung und Norm ein tiefes Verständnis solcher normierter Räume. An dieser Stelle setzen folgende Überlegungen an: - Die genaue Untersuchung einiger Resultate der reichhaltigen Banachverbandstheorie ließ (zu Recht) vermuten, dass in manchen Fällen die Verbandsnormeigenschaft keine notwendige Voraussetzung ist. In der Literatur gibt es bereits einige interessante Untersuchungen allgemeiner geordneter normierter Räume mit qualifizierten positiven Kegeln und in dem Zusammenhang eine Reihe wertvoller Dualitätsaussagen. An dieser Stelle sind die Eigenschaften der Normalität, der Nichtabgeflachtheit und der Regularität eines Kegels erwähnt, welche selbst im Falle eines mit einer Norm versehenen Vektorverbandes eine schwächere Relation zwischen Ordnung und Norm ergeben als die Verbandsnormeigenschaft. - In einer neueren Arbeit wurde der aus der Theorie der Vektorverbände gut bekannte Begriff der Disjunktheit bereits auf beliebige geordnete Räume verallgemeinert, wobei viele Eigenschaften disjunkter Vektoren, des disjunkten Komplements einer Menge usw., welche aus der Verbandstheorie bekannt sind, erhalten bleiben. Auf entsprechende Weise, d.h. durch das Ersetzen exakter Infima und Suprema durch Mengen unterer bzw. oberer Schranken, können der Modul eines Vektors sowie der Begriff der Solidität einer Menge für geordnete (normierte) Räume eingeführt werden. An solchen Überlegungen knüpft die vorliegende Arbeit an. Im Kapitel m-Normen ======== werden verallgemeinerte Formen der M-Norm Eigenschaft eingeführt und untersucht. AM-Räume und (approximative) Ordnungseinheit-Räume sind Beispiele für geordnete normierte Räume mit m-Norm. Die Schwerpunkte dieses Kapitels sind zum Einen Kegel- und Normeigenschaften dieser Räume und deren Charakterisierung mit Hilfe solcher Eigenschaften und zum Anderen Dualitätsaussagen, wie sie zum Teil bereits aus der Theorie der AM- und AL-Räume bekannt sind. Minimal totale Mengen ===================== Ziel dieses Kapitels ist es, den oben erwähnten verallgemeinerten Disjunktheitsbegiff für geordnete normierte Räume zu untersuchen. Eine zentrale Rolle spielen dabei totale Mengen im Dualraum und insbesondere minimal totale Mengen sowie deren Zusammenhang mit der Disjunktheit von Elementen des Ausgangsraumes. Normierte pre-Riesz Räume ========================= Wie bereits bekannt, lässt sich jeder pre-Riesz Raum ordnungsdicht in einen (bis auf Isomorphie) eindeutigen minimalen Vektorverband einbetten, die so genannte Riesz Vervollständigung. Ist der pre-Riesz Raum normiert und sein positiver Kegel abgeschlossen, dann kann eine Verbandsnorm auf der Riesz Vervollständigung eingeführt werden, welche sich in vielen Fällen als äquivalent zur Ausgangsnorm auf dem pre-Riesz Raum erweist. Es ist allgemein bekannt, dass sich dann auch stetige lineare Funktionale fortsetzen lassen. In diesem Kapitel wird nun untersucht, inwiefern sich Ordnungsrelationen auf einer Menge stetiger linearer Funktionale beim Übergang zur Menge der Fortsetzungen erhalten lassen. Die gewonnenen Erkenntnisse kommen anschließend bei Untersuchungen zur schwachen bzw. schwach*-Topologie auf geordneten normierten Räumen zur Anwendung. Hierbei werden zwei Fragestellungen behandelt. Zum Einen gilt das Augenmerk disjunkten Folgen in geordneten normierten Räumen. Als Beispiel seien ordnungsbeschränkte disjunkte Folgen in geordneten normierten Räumen mit halbmonotoner mNorm genannt, welche stets schwach gegen Null konvergieren. Zum Anderen werden monoton fallende Folgen und Netze bzw. disjunkte Folgen von stetigen linearen Funktionalen auf einem geordneten normierten Raum betrachtet. / Banach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
|
2 |
Contributions to Lattice-like Properties on Ordered Normed SpacesTzschichholtz, Ingo 19 May 2006 (has links)
Banachverbände spielen sowohl in der Theorie als auch in der Anwendung von geordneten normierten Räume eine bedeutende Rolle. Einerseits erweisen sich viele in der Praxis relevanten Räume als Banachverbände, andererseits ermöglichen die Vektorverbandsstruktur und die enge Beziehung zwischen Ordnung und Norm ein tiefes Verständnis solcher normierter Räume. An dieser Stelle setzen folgende Überlegungen an: - Die genaue Untersuchung einiger Resultate der reichhaltigen Banachverbandstheorie ließ (zu Recht) vermuten, dass in manchen Fällen die Verbandsnormeigenschaft keine notwendige Voraussetzung ist. In der Literatur gibt es bereits einige interessante Untersuchungen allgemeiner geordneter normierter Räume mit qualifizierten positiven Kegeln und in dem Zusammenhang eine Reihe wertvoller Dualitätsaussagen. An dieser Stelle sind die Eigenschaften der Normalität, der Nichtabgeflachtheit und der Regularität eines Kegels erwähnt, welche selbst im Falle eines mit einer Norm versehenen Vektorverbandes eine schwächere Relation zwischen Ordnung und Norm ergeben als die Verbandsnormeigenschaft. - In einer neueren Arbeit wurde der aus der Theorie der Vektorverbände gut bekannte Begriff der Disjunktheit bereits auf beliebige geordnete Räume verallgemeinert, wobei viele Eigenschaften disjunkter Vektoren, des disjunkten Komplements einer Menge usw., welche aus der Verbandstheorie bekannt sind, erhalten bleiben. Auf entsprechende Weise, d.h. durch das Ersetzen exakter Infima und Suprema durch Mengen unterer bzw. oberer Schranken, können der Modul eines Vektors sowie der Begriff der Solidität einer Menge für geordnete (normierte) Räume eingeführt werden. An solchen Überlegungen knüpft die vorliegende Arbeit an. Im Kapitel m-Normen ======== werden verallgemeinerte Formen der M-Norm Eigenschaft eingeführt und untersucht. AM-Räume und (approximative) Ordnungseinheit-Räume sind Beispiele für geordnete normierte Räume mit m-Norm. Die Schwerpunkte dieses Kapitels sind zum Einen Kegel- und Normeigenschaften dieser Räume und deren Charakterisierung mit Hilfe solcher Eigenschaften und zum Anderen Dualitätsaussagen, wie sie zum Teil bereits aus der Theorie der AM- und AL-Räume bekannt sind. Minimal totale Mengen ===================== Ziel dieses Kapitels ist es, den oben erwähnten verallgemeinerten Disjunktheitsbegiff für geordnete normierte Räume zu untersuchen. Eine zentrale Rolle spielen dabei totale Mengen im Dualraum und insbesondere minimal totale Mengen sowie deren Zusammenhang mit der Disjunktheit von Elementen des Ausgangsraumes. Normierte pre-Riesz Räume ========================= Wie bereits bekannt, lässt sich jeder pre-Riesz Raum ordnungsdicht in einen (bis auf Isomorphie) eindeutigen minimalen Vektorverband einbetten, die so genannte Riesz Vervollständigung. Ist der pre-Riesz Raum normiert und sein positiver Kegel abgeschlossen, dann kann eine Verbandsnorm auf der Riesz Vervollständigung eingeführt werden, welche sich in vielen Fällen als äquivalent zur Ausgangsnorm auf dem pre-Riesz Raum erweist. Es ist allgemein bekannt, dass sich dann auch stetige lineare Funktionale fortsetzen lassen. In diesem Kapitel wird nun untersucht, inwiefern sich Ordnungsrelationen auf einer Menge stetiger linearer Funktionale beim Übergang zur Menge der Fortsetzungen erhalten lassen. Die gewonnenen Erkenntnisse kommen anschließend bei Untersuchungen zur schwachen bzw. schwach*-Topologie auf geordneten normierten Räumen zur Anwendung. Hierbei werden zwei Fragestellungen behandelt. Zum Einen gilt das Augenmerk disjunkten Folgen in geordneten normierten Räumen. Als Beispiel seien ordnungsbeschränkte disjunkte Folgen in geordneten normierten Räumen mit halbmonotoner mNorm genannt, welche stets schwach gegen Null konvergieren. Zum Anderen werden monoton fallende Folgen und Netze bzw. disjunkte Folgen von stetigen linearen Funktionalen auf einem geordneten normierten Raum betrachtet. / Banach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
|
Page generated in 0.0976 seconds