• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

Badía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Remón, Alfredo 26 November 2007 (has links) (PDF)
We investigate model reduction of large-scale linear time-invariant systems in generalized state-space form. We consider sparse state matrix pencils, including pencils with banded structure. The balancing-based methods employed here are composed of well-known linear algebra operations and have been recently shown to be applicable to large models by exploiting the structure of the matrices defining the dynamics of the system. In this paper we propose a modification of the LR-ADI iteration to solve large-scale generalized Lyapunov equations together with a practical convergence criterion, and several other implementation refinements. Using kernels from several serial and parallel linear algebra libraries, we have developed a parallel package for model reduction, SpaRed, extending the applicability of balanced truncation to sparse systems with up to $O(10^5)$ states. Experiments on an SMP parallel architecture consisting of Intel Itanium 2 processors illustrate the numerical performance of this approach and the potential of the parallel algorithms for model reduction of large-scale sparse systems.
2

Parallel Order Reduction via Balanced Truncation for Optimal Cooling of Steel Profiles

Badía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Saak, Jens 06 September 2006 (has links) (PDF)
We employ two efficient parallel approaches to reduce a model arising from a semi-discretization of a controlled heat transfer process for optimal cooling of a steel profile. Both algorithms are based on balanced truncation but differ in the numerical method that is used to solve two dual generalized Lyapunov equations, which is the major computational task. Experimental results on a cluster of Intel Xeon processors compare the efficacy of the parallel model reduction algorithms.
3

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

Badía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Remón, Alfredo 26 November 2007 (has links)
We investigate model reduction of large-scale linear time-invariant systems in generalized state-space form. We consider sparse state matrix pencils, including pencils with banded structure. The balancing-based methods employed here are composed of well-known linear algebra operations and have been recently shown to be applicable to large models by exploiting the structure of the matrices defining the dynamics of the system. In this paper we propose a modification of the LR-ADI iteration to solve large-scale generalized Lyapunov equations together with a practical convergence criterion, and several other implementation refinements. Using kernels from several serial and parallel linear algebra libraries, we have developed a parallel package for model reduction, SpaRed, extending the applicability of balanced truncation to sparse systems with up to $O(10^5)$ states. Experiments on an SMP parallel architecture consisting of Intel Itanium 2 processors illustrate the numerical performance of this approach and the potential of the parallel algorithms for model reduction of large-scale sparse systems.
4

Parallel Order Reduction via Balanced Truncation for Optimal Cooling of Steel Profiles

Badía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Saak, Jens 06 September 2006 (has links)
We employ two efficient parallel approaches to reduce a model arising from a semi-discretization of a controlled heat transfer process for optimal cooling of a steel profile. Both algorithms are based on balanced truncation but differ in the numerical method that is used to solve two dual generalized Lyapunov equations, which is the major computational task. Experimental results on a cluster of Intel Xeon processors compare the efficacy of the parallel model reduction algorithms.

Page generated in 0.1538 seconds