• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New insights into conjugate duality

Grad, Sorin - Mihai 19 July 2006 (has links) (PDF)
With this thesis we bring some new results and improve some existing ones in conjugate duality and some of the areas it is applied in. First we recall the way Lagrange, Fenchel and Fenchel - Lagrange dual problems to a given primal optimization problem can be obtained via perturbations and we present some connections between them. For the Fenchel - Lagrange dual problem we prove strong duality under more general conditions than known so far, while for the Fenchel duality we show that the convexity assumptions on the functions involved can be weakened without altering the conclusion. In order to prove the latter we prove also that some formulae concerning conjugate functions given so far only for convex functions hold also for almost convex, respectively nearly convex functions. After proving that the generalized geometric dual problem can be obtained via perturbations, we show that the geometric duality is a special case of the Fenchel - Lagrange duality and the strong duality can be obtained under weaker conditions than stated in the existing literature. For various problems treated in the literature via geometric duality we show that Fenchel - Lagrange duality is easier to apply, bringing moreover strong duality and optimality conditions under weaker assumptions. The results presented so far are applied also in convex composite optimization and entropy optimization. For the composed convex cone - constrained optimization problem we give strong duality and the related optimality conditions, then we apply these when showing that the formula of the conjugate of the precomposition with a proper convex K - increasing function of a K - convex function on some n - dimensional non - empty convex set X, where K is a k - dimensional non - empty closed convex cone, holds under weaker conditions than known so far. Another field were we apply these results is vector optimization, where we provide a general duality framework based on a more general scalarization that includes as special cases and improves some previous results in the literature. Concerning entropy optimization, we treat first via duality a problem having an entropy - like objective function, from which arise as special cases some problems found in the literature on entropy optimization. Finally, an application of entropy optimization into text classification is presented.
2

New insights into conjugate duality

Grad, Sorin - Mihai 13 July 2006 (has links)
With this thesis we bring some new results and improve some existing ones in conjugate duality and some of the areas it is applied in. First we recall the way Lagrange, Fenchel and Fenchel - Lagrange dual problems to a given primal optimization problem can be obtained via perturbations and we present some connections between them. For the Fenchel - Lagrange dual problem we prove strong duality under more general conditions than known so far, while for the Fenchel duality we show that the convexity assumptions on the functions involved can be weakened without altering the conclusion. In order to prove the latter we prove also that some formulae concerning conjugate functions given so far only for convex functions hold also for almost convex, respectively nearly convex functions. After proving that the generalized geometric dual problem can be obtained via perturbations, we show that the geometric duality is a special case of the Fenchel - Lagrange duality and the strong duality can be obtained under weaker conditions than stated in the existing literature. For various problems treated in the literature via geometric duality we show that Fenchel - Lagrange duality is easier to apply, bringing moreover strong duality and optimality conditions under weaker assumptions. The results presented so far are applied also in convex composite optimization and entropy optimization. For the composed convex cone - constrained optimization problem we give strong duality and the related optimality conditions, then we apply these when showing that the formula of the conjugate of the precomposition with a proper convex K - increasing function of a K - convex function on some n - dimensional non - empty convex set X, where K is a k - dimensional non - empty closed convex cone, holds under weaker conditions than known so far. Another field were we apply these results is vector optimization, where we provide a general duality framework based on a more general scalarization that includes as special cases and improves some previous results in the literature. Concerning entropy optimization, we treat first via duality a problem having an entropy - like objective function, from which arise as special cases some problems found in the literature on entropy optimization. Finally, an application of entropy optimization into text classification is presented.

Page generated in 0.1793 seconds