1 |
Sequential optimal design of neurophysiology experimentsLewi, Jeremy 31 March 2009 (has links)
For well over 200 years, scientists and doctors have been poking and prodding brains in every which way in an effort to understand how they work. The earliest pokes were quite crude, often involving permanent forms of brain damage. Though neural injury continues to be an active area of research within neuroscience, technology has given neuroscientists a number of tools for stimulating and observing the brain in very subtle ways.
Nonetheless, the basic experimental paradigm remains the same; poke the brain and see what happens. For example, neuroscientists studying the visual or auditory system can easily generate any image or sound they can imagine to see how an organism or neuron will respond. Since neuroscientists can now easily design more pokes then they could every deliver, a fundamental question is ``What pokes should they actually use?' The complexity of the brain means that only a small number of the pokes scientists can deliver will produce any information about the brain. One of the fundamental challenges of experimental neuroscience is finding the right stimulus parameters to produce an informative response in the system being studied. This thesis addresses this problem by developing algorithms to sequentially optimize neurophysiology experiments.
Every experiment we conduct contains information about how the brain works. Before conducting the next experiment we should use what we have already learned to decide which experiment we should perform next. In particular, we should design an
experiment which will reveal the most information about the brain. At a high level, neuroscientists already perform this type of sequential, optimal experimental design; for example crude experiments which knockout entire regions of the brain have given rise to modern experimental techniques which probe the responses of individual neurons using finely tuned stimuli. The goal of this thesis is to develop automated and rigorous methods for optimizing neurophysiology experiments efficiently and at a much finer time scale. In particular, we present methods for near instantaneous optimization of the stimulus being used to drive a neuron.
|
2 |
A Statistical Analysis of the Lake Levels at Lake NeusiedlLeodolter, Johannes January 2008 (has links) (PDF)
A long record of daily data is used to study the lake levels of Lake Neusiedl, a large steppe lake at the eastern border of Austria. Daily lake level changes are modeled as functions of precipitation, temperature, and wind conditions. The occurrence and the amount of daily precipitation
are modeled with logistic regressions and generalized linear models.
|
3 |
Skogsväxters utbredning i relation till pH, latitud och trädsammansättning : Exkursion för ekologiundervisningCarlsson, Rebecka January 2016 (has links)
This study investigated the impact of three edaphic factors on the distribution of forest plants in Sweden. Based on 2657 plots with 22 common species, Canonical Correspondence Analysis (CCA) and Generalized-linear-model (GLM) were performed with pH measurements in the top layer of the soil, latitude and deciduous tree proportion as explanatory variables. Variation of the species occurrence could to a substantial degree be explained by pH, latitude and proportion of timber volume of deciduous tree species. Furthermore, the majority of species were affected by the studied environmental variables. Therefore, these factors have an important role in the ecological interactions in the forest. All species also showed broad pH-niches with many occurrences spread out within the species entire pH-range. Finally, the study relates to educational science through designing a meaningful excursion for secondary school when teaching ecology.
|
4 |
Identification des indices acoustiques utilisés lors de la compréhension de la parole dégradée / Identification of acoustic cues involved in degraded speech comprehensionVarnet, Léo 18 November 2015 (has links)
Bien qu’il existe un large consensus de la communauté scientifique quant au rôle des indices acoustiques dans la compréhension de la parole, les mécanismes exacts permettant la transformation d’un flux acoustique continu en unités linguistiques élémentaires demeurent aujourd’hui largement méconnus. Ceci est en partie dû à l’absence d’une méthodologie efficace pour l’identification et la caractérisation des primitives auditives de la parole. Depuis les premières études de l’interface acoustico-phonétique par les Haskins Laboratories dans les années 50, différentes approches ont été proposées ; cependant, toutes sont fondamentalement limitées par l’artificialité des stimuli utilisés, les contraintes du protocole expérimental et le poids des connaissances a priori nécessaires. Le présent travail de thèse s’est intéressé { la mise en oeuvre d’une nouvelle méthode tirant parti de la situation de compréhension de parole dégradée pour mettre en évidence les indices acoustiques utilisés par l’auditeur.Dans un premier temps, nous nous sommes appuyés sur la littérature dans le domaine visuel en adaptant la méthode des Images de Classification à une tâche auditive de catégorisation de phonèmes dans le bruit. En reliant la réponse de l’auditeur { chaque essai à la configuration précise du bruit lors de cet essai, au moyen d’un Modèle Linéaire Généralisé, il est possible d’estimer le poids des différentes régions temps-fréquence dans la décision. Nous avons illustré l’efficacité de notre méthode, appelée Image de Classification Auditive, à travers deux exemples : une catégorisation /aba/-/ada/, et une catégorisation /da/-/ga/ en contexte /al/ ou /aʁ/. Notre analyse a confirmé l’implication des attaques des formants F2 et F3, déjà suggérée par de précédentes études, mais a également permis de révéler des indices inattendus. Dans un second temps, nous avons employé cette technique pour comparer les résultats de participants musiciens experts (N=19) ou dyslexiques (N=18) avec ceux de participants contrôles. Ceci nous a permis d’étudier les spécificités des stratégies d’écoute de ces différents groupes.L’ensemble des résultats suggèrent que les Images de Classification Auditives pourraient constituer une nouvelle approche, plus précise et plus naturelle, pour explorer et décrire les mécanismes { l’oeuvre au niveau de l’interface acoustico-phonétique. / There is today a broad consensus in the scientific community regarding the involvement of acoustic cues in speech perception. Up to now, however, the precise mechanisms underlying the transformation from continuous acoustic stream into discrete linguistic units remain largely undetermined. This is partly due to the lack of an effective method for identifying and characterizing the auditory primitives of speech. Since the earliest studies on the acoustic–phonetic interface by the Haskins Laboratories in the 50’s, a number of approaches have been proposed; they are nevertheless inherently limited by the non-naturalness of the stimuli used, the constraints of the experimental apparatus, and the a priori knowledge needed. The present thesis aimed at introducing a new method capitalizing on the speech-in-noise situation for revealing the acoustic cues used by the listeners.As a first step, we adapted the Classification Image technique, developed in the visual domain, to a phoneme categorization task in noise. The technique relies on a Generalized Linear Model to link each participant’s response to the specific configuration of noise, on a trial-by-trail basis, thereby estimating the perceptual weighting of the different time-frequency regions for the decision. We illustrated the effectiveness of our Auditory Classification Image method through 2 examples: a /aba/-/ada/ categorization and a /da/-/ga/ categorization in context /al/ or /aʁ/. Our analysis confirmed that the F2 and F3 onsets were crucial for the tasks, as suggested in previous studies, but also revealed unexpected cues. In a second step, we relied on this new method to compare the results of musical experts (N=19) or dyslexics participants (N=18) to those of controls. This enabled us to explore the specificities of each group’s listening strategies.All the results taken together show that the Auditory Classification Image method may be a more precise and more straightforward approach to investigate the mechanisms at work at the acoustic-phonetic interface.
|
5 |
Dynamic prediction of repair costs in heavy-duty trucksSaigiridharan, Lakshidaa January 2020 (has links)
Pricing of repair and maintenance (R&M) contracts is one among the most important processes carried out at Scania. Predictions of repair costs at Scania are carried out using experience-based prediction methods which do not involve statistical methods for the computation of average repair costs for contracts terminated in the recent past. This method is difficult to apply for a reference population of rigid Scania trucks. Hence, the purpose of this study is to perform suitable statistical modelling to predict repair costs of four variants of rigid Scania trucks. The study gathers repair data from multiple sources and performs feature selection using the Akaike Information Criterion (AIC) to extract the most significant features that influence repair costs corresponding to each truck variant. The study proved to show that the inclusion of operational features as a factor could further influence the pricing of contracts. The hurdle Gamma model, which is widely used to handle zero inflations in Generalized Linear Models (GLMs), is used to train the data which consists of numerous zero and non-zero values. Due to the inherent hierarchical structure within the data expressed by individual chassis, a hierarchical hurdle Gamma model is also implemented. These two statistical models are found to perform much better than the experience-based prediction method. This evaluation is done using the mean absolute error (MAE) and root mean square error (RMSE) statistics. A final model comparison is conducted using the AIC to draw conclusions based on the goodness of fit and predictive performance of the two statistical models. On assessing the models using these statistics, the hierarchical hurdle Gamma model was found to perform predictions the best
|
Page generated in 0.1038 seconds