• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Superfícies Weingarten generalizada tipo harmônico no espaço hiperbólico / Generalized Weingarten surfaces of harmonic type in hyperbolic space

Fernandes, Karoline Victor 20 September 2013 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T15:23:14Z No. of bitstreams: 2 Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:39:54Z (GMT) No. of bitstreams: 2 Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T15:39:54Z (GMT). No. of bitstreams: 2 Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-09-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study surfaces M in hyperbolic space whose mean curvature H and Gaussian curvature KI satisfy the relation 2(H 􀀀1)e2μ +KI(1􀀀e2μ) = 0; where μ is a harmonic function with respect to the quadratic form s = 􀀀KII + 2(H 􀀀 1)II; and I, II denote, respectively, the first and second quadratic form of M. These surfaces are called Generalized Weingarten surfaces of harmonic type (HGW-surfaces). We obtain a representation type Weierstrass for these surfaces that depend on three holomorphic functions. As an application we obtain a representation type Weierstrass for Bryant surfaces and classify all HGW-surfaces of rotation. / Neste trabalho estudamos superfícies M no espaço hiperbólico cuja curvatura média H e a curvatura Gaussiana KI satisfazem a relação 2(H􀀀1)e2μ+KI(1􀀀e2μ) = 0; onde μ é uma função harmônica com respeito a forma quadrática s = 􀀀KII +2(H 􀀀1)II; onde I e II são respectivamente a primeira e segunda forma quadrática de M. Estas superfícies serão chamadas de Superfícies Weingarten generalizada tipo harmônico (Superfícies-WGH). Obtemos uma representação tipo Weierstrass para estas superfícies que dependem de três funções holomorfas. Como aplicação obtemos uma representação tipo Weierstrass para superfícies de Bryant e classificamos as superfícies-WGH de rotação.

Page generated in 0.1074 seconds