• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 99
  • 61
  • 55
  • 32
  • 25
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 817
  • 142
  • 133
  • 95
  • 94
  • 88
  • 78
  • 65
  • 61
  • 61
  • 59
  • 59
  • 58
  • 56
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The inversion method in random variate generation /

Yuen, Colleen. January 1982 (has links)
No description available.
112

Optimizing The Size And Location Of Distributed Generators To Maximize The Grid Stability

Masanna gari, Abhilash Reddy 13 December 2008 (has links)
Distributed Generators (DGs) are being increasingly utilized in power system distribution networks to provide electric power at or near load centers. These are generally based on technologies like solar, wind and biomass and range from 10 kW to 50 MW. Research work carried out in this thesis relates to the optimal siting and sizing of DGs in order to maximize the system voltage stability and improve voltage profile. This has been formulated as an optimization problem and solved using LINGO software. Power flow equations have been embedded in the LINGO formulation, along with other operating constraints. The solution provides optimal values of the bus voltage magnitudes and angles, which have been utilized to compute a stability index. Finally, a multi-objective formulation has been developed to simultaneously optimize the size and placement of the DGs. The impact of the DGs on voltage stability and voltage profile has been studied on I standard distribution test systems and verified using three-phase unbalanced power flow software developed at Mississippi State University (MSU). Results indicate that the sizing and siting of DGs are system dependent and should be optimally selected before installing the distributed generators in the system.
113

Simulation of a Solar-Driven Thermoelectric Generator

Andampour, Iraj 01 October 1982 (has links) (PDF)
With improvements of thermoelectric materials leading to higher figures of merit, interest has been developed in a broad spectrum of applications. In this study, the thermal performance of a solar-driven thermoelectric (TE) generator was examined by computer simulation and analytical formulations. The hot junction of the disk-shaped TE module is heated by a conical-shaped solar concentrator reflecting rays onto a cylindrical inner electrode. Controllable cooling water flow cools the outer P ΓÇô N junctions to establish the necessary thermal potential for electric generation. Desired power output can be obtained from a number of TE modules in series and parallel. The computer program was used to examine periodic constant flow rate of the cooling water. It was found that the constant flow rate operation yielded the highest time-integrated TE thermal efficiency. Other parametrical studies performed include the height of copper rod, the ratio of outer to inner diameters of the disks, the thickness of the disks, the solar influx and the heat transfer coefficient between cooling water and the modules. The computer and analytic results on these studies show similar behaviors. It was found that the efficiency of the solar thermoelectric cogenerator ranges from 1.5 to 5.0 percent which is considerably lower than a photovoltaic system.
114

The Integration of Annular Thermoelectric Generators in a Heat Exchanger for Waste Heat Recovery Applications

Zaher, Mohammed January 2017 (has links)
Growing concerns regarding climate change, the increase in demand for energy and the efficient utilization of energy have become of major interest in applications of heating and power generation. A large portion of the energy input to these applications is lost, due to their typical inefficiencies, in the form of waste thermal energy which, if captured and utilized, can offer an abundant source of energy for electricity generation and heating purposes. The use of thermoelectric generators (TEGs) of different designs in waste heat recovery applications has been pursued over the past few decades as the generation of electrical power using TEGs has become viable compared to other conventional systems at low temperatures. This study focuses on the implementation of an annular design for integrated TEG modules in a heat exchanger device for waste heat recovery and the investigation of the effect of different TEG design parameters on the device performance. The integration of the annular TEG design in the heat exchanger was studied using a developed numerical model to investigate the interaction between the heat transfer and the thermoelectric effects and evaluate the performance under specific operating conditions. The heat transferred from the exhaust to the water flow through the TEGs was modelled using a thermal network for the heat flow, coupled with an electrical circuit for the power output. The model was validated using experimental results of the first generation of the TEG device with good agreement (3-6 %) between the predicted and measured performance results: power output, efficiency and the exhaust and water flow temperatures. With the objectives of maximizing the power output and improving the power characteristics, a half annular TEG design was presented. It was able to generate the same power output with double the voltage and half the current, thus improved the power characteristics required for functional operation, compared to the full annular design. The effect of the annular TEG design dimensions on the device performance was studied for a multi-row heat exchanger using the numerical model. The results showed that a maximum power output can be obtained at optimum TEG diameter ratio and thickness. In addition, the TEGs performance was studied under different electrical connection configurations in series and in parallel. The series connection between TEG rows showed better power output characteristics with lower current output, minimal power loss due to temperature mismatch and higher voltage output. The effect of heat exchanger design considerations such as the axial heat conduction was also investigated using the numerical model and the results were compared with an ANSYS model for verification. Good agreement was demonstrated and the results showed a decrease in the total power output of multiple TEG rows when axial conduction of heat was allowed between the TEGs hot-side surfaces in the heat exchanger. A dimensions map was created for annular TEGs integrated in a heat exchanger combining the effects of varying the TEG diameter ratio and thickness on the power output. Further, a dimensionless design parameter (β) was introduced to locate the maximum power region on the map. Using the map as a design tool, the dimensions of the annular TEG modules in a heat exchanger were determined to maximize the power output under a typical current output constraint in order to improve the system power characteristics. Using the map, it was shown that the current output could be reduced by 46 % of its value at the maximum power available on the map and the resultant power output could be maintained at 98 % of its maximum value. This also resulted in a 48% reduction in the TEG material volume and an increased voltage output of the device. As a result, the power output was maximized, the current output was limited to reduce losses in the power management system components and material volume reduction was achieved which would increase the device power density and reduce its overall cost. / Thesis / Master of Applied Science (MASc)
115

Turbulent Boundary Layer Separation and Control

Lögdberg, Ola January 2008 (has links)
Boundary layer separation is an unwanted phenomenon in most technical applications, as for instance on airplane wings, ground vehicles and in internal flow systems. If separation occurs, it causes loss of lift, higher drag and energy losses. It is thus essential to develop methods to eliminate or delay separation.In the present experimental work streamwise vortices are introduced in turbulent boundary layers to transport higher momentum fluid towards the wall. This enables the boundary layer to stay attached at  larger pressure gradients. First the adverse pressure gradient (APG) separation bubbles that are to be eliminated are studied. It is shown that, independent of pressure gradient, the mean velocity defect profiles are self-similar when the scaling proposed by Zagarola and Smits is applied to the data. Then vortex pairs and arrays of vortices of different initial strength are studied in zero pressure gradient (ZPG). Vane-type vortex generators (VGs) are used to generate counter-rotating vortex pairs, and it is shown that the vortex core trajectories scale with the VG height h and the spanwise spacing of the blades. Also the streamwise evolution of the turbulent quantities scale with h. As the vortices are convected downstream they seem to move towards a equidistant state, where the distance from the vortex centres to the wall is half the spanwise distance between two vortices. Yawing the VGs up to 20° do not change the generated circulation of a VG pair. After the ZPG measurements, the VGs where applied in the APG mentioned above. It is shown that that the circulation needed to eliminate separation is nearly independent of the pressure gradient and that the streamwise position of the VG array relative to the separated region is not critical to the control effect. In a similar APG jet vortex generators (VGJs) are shown to as effective as the passive VGs. The ratio VR of jet velocity and test section inlet velocity is varied and a control effectiveness optimum is found for VR=5. At 40° yaw the VGJs have only lost approximately 20% of the control effect. For pulsed VGJs the pulsing frequency, the duty cycle and VR were varied. It was shown that to achieve maximum control effect the injected mass flow rate should be as large as possible, within an optimal range of jet VRs. For a given injected mass flow rate, the important parameter was shown to be the injection time t1. A non-dimensional injection time is defined as t1+ = t1Ujet/d, where d is the jet orifice diameter. Here, the optimal  t1+ was 100-200. / QC 20100825
116

Superconducting generators for large offshore wind turbines

Keysan, Ozan January 2014 (has links)
This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty of the topologies reside in using a single loop shaped stationary superconducting field winding, which eliminates the rotating transfer couplers and electric brushes or brushless exciters. Furthermore, the electromagnetic forces in the superconducting wire are also eliminated, which simplifies the design and manufacturing of the cryostat and the support structure. Among the four topologies presented, the claw pole type machine is the most promising one. The rotor of the machine composes of claw-poles made from laminated electrical sheets, the superconducting field winding and the armature winding are stationary. The machine is analysed using 3D FEA simulations and a small linear machine prototype is manufactured to verify the simulations. For large scale applications, a double-sided claw pole machine is proposed, which has balanced magnetic attraction forces in the rotor. The machine has a modular cryostat structure, which increases the availability of the machine. Thus, even if a fault occurs in the cryocoolers or in the armature coils, the rest of the machine can operate at partial load until the maintenance is performed. Moreover, it is much easier to replace the faulty parts, as full disassemble of the machine is not required, and a small on-site crane can be used. As a result, it offers operational advantages over the existing superconducting topologies. A 10 MW, 10 rpm generator design is presented, which has a diameter of 6.6 m and an axial length of 1.4 m. The total active mass of the generator is 58 tonnes, and the structural mass is 126 tonnes, which gives a total mass of 184 tonnes. There are four independent cryostats and two independent armature windings in the machine to improve modularity. The biggest advantage of the design is the significantly less superconducting wire usage compared to any other designs; 10 MW machine just needs 15 km of MgB2 wire at 30 K. Thus, it is believed that the proposed topology is a very cost effective and suitable candidate for a successful entry to the wind turbine market.
117

The implementation of generators and goal-directed evaluation in Icon.

O'Bagy, Janalee. January 1988 (has links)
Generators and goal-directed evaluation provide a rich programming paradigm when combined with traditional control structures in an imperative language. Icon is a language whose goal-directed evaluation is integrated with traditional control structures. This integration provides powerful mechanisms for formulating many complex programming operations in concise and natural ways. However, generators, goal-directed evaluation, and related control structures introduce implementation problems that do not exist for languages with only conventional expression evaluation. This dissertation presents an implementation model using recursion that serves as a basis for both an interpreter and a compiler. Furthermore, in the case of the compiler, optimizations can be performed to improve the efficiency of Icon programs, mainly by reducing the general evaluation strategy whenever possible. The dissertation describes a compile-time semantic analysis used to gather information about the properties of expressions and how they are used at their lexical sites. The optimizations that can be performed using this information are illustrated in the context of the compiler model described in the dissertation.
118

Corona screen effectiveness in large machines under high voltage, high frequency transient conditions

Cargill, Steven M. January 1999 (has links)
No description available.
119

Secure computer communications and databases using chaotic encryption systems

Shehata Ahmed, Alaael-Din Rohiem January 2000 (has links)
No description available.
120

Application of Dither to Low Resolution Quantization Systems

Borgen, Gary S. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / A significant problem in the processing chain of a low resolution quantization system is the Analog to Digital converter quantization error. The classical model of quantization treats the error generated as a random additive process that is independent of the input and uniformly distributed. This model is valid for complex or random input signals that are large relative to a least significant bit. But the model fails catastrophically for small, simple signals applied to high resolution quantization systems, and in addition, the model fails for simple signals applied to low resolution quantization systems, i.e. one to 6 bits resolution. This paper will discuss a means of correcting this problem by the application of dither. Two methods of dither will be discussed as well as a real-life implementation of the techniques.

Page generated in 0.0597 seconds