• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 864
  • 209
  • 135
  • 79
  • 65
  • 65
  • 65
  • 65
  • 65
  • 65
  • 34
  • 20
  • 5
  • 3
  • 2
  • Tagged with
  • 1441
  • 1441
  • 421
  • 373
  • 272
  • 228
  • 216
  • 191
  • 147
  • 129
  • 118
  • 87
  • 79
  • 79
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Cellular role of miR-143 in cervical cancer

Wong, Tsz-lo., 黃子璐. January 2012 (has links)
Cervical cancer is a largely preventable malignancy due to the availability of cytology screening and vaccination against the essential initiation factor of cervical carcinogenesis, human papillomavirus (HPV). However, cervical cancer remains a significant medical burden worldwide, particularly in developing countries where large scale screening or vaccination programs are not financially feasible. Molecular tests such as HPV DNA tests have the potential to improve the speed and sensitivity of cervical cancer screening but suffer from limited specificity. Additional adjunct molecular markers are therefore desirable for enhancing molecular tests. Our previous research has revealed miR-143, a microRNA downregulated in a number of cancers, could be detected in liquid based cytology samples and is significantly reduced in cervical cancer samples and cell lines. Cellular role of miR-143 and mechanism behind its downregulation remain an unknown in cervical carcinogenesis. To explore the cellular roles of miR-143 in cervical cancer, a construct expressing miR-143 was transfected into cervical cancer cell lines HeLa, SiHa and C33A. miR- 143 overexpression was verified by qPCR. The miR-143 overexpressing cell lines were used to conduct a number of cellular function assays. It has been reported that miR-143 is able to suppress cell growth in HPV-positive HeLa. We followed up the findings and revealed miR-143 overexpression in HPV-negative C33A did not suppress cell growth in an MTT cell proliferation assay. ERK5 and KRAS, two targets of miR-143, are downregulated in colon cancer and bladder cancer to suppress cell grwoth. However, mRNA level of ERK5 and KRAS were not altered in all three miR-143 overexpressed cervical cancer cell lines, suggesting that miR-143 may not target ERK5 and KRAS transcriptionally in cervical cancer. Ability of miR-143 in regulating cell differentiation was evaluated by the expression of K10, an early keratinocyte differentiation marker. K10 was upregulated only in miR-143 overexpressed HeLa and SiHa as revealed by qPCR. A parallel increase in hSkn-1a mRNA, a transcription factor of K10, was also observed specifically in the two miR-overexpressed HPV-positive cell lines. miR-143 level is inversely correlated with cytology grading and progression of cervical disease, hinting its role in mediating cell migration and invasion during cancer progression and metastasis. A reduction of cell migration as demonstrated in wound healing assay and in vitro transwell migration assay was observed exclusively in miR-143 overexpressed HeLa and SiHa. miR-143 overexpression in C33A did not introduce any effect in cell migration. A reduction of cell invasion was also observed merely in miR-143 overexpressed HeLa and SiHa as revealed in a transwell invasion assay. Apart from studying the cellular roles of miR-143 in cervical cancer, this study has also explored mechanisms behind miR-143 downregulation in cervical cancer owing to the fact that certain miR-143 mediated cellular functions were observed only in HPV-positive cervical cancer cell lines. We hypothesized that HPV E6 and E7 oncoprotein may downregulate miR-143 in cervical cancer. The hypothesis was supported by our findings where normal cervical epithelial cell line immortalized by E6 and E7 had an undetectable level of endogenous miR-143 level. The same primary cells immortalized by shp16-hTERT expressed residual amounts of miR-143 as revealed by qPCR. Owing to the low miR-143 expression in shp16-hTERTimmortalized normal cervical epithelial cell line, downregulation of miR-143 in cervical cancer cell lines may also be contributed to hTERT overexpression and p16 silencing. Overall, miR-143 plays an important role in suppressing cell proliferation, enhancing keratinocyte differentiation marker expression, reducing migration and invasion in HPV-positive cervical cancer. Downregulation of miR-143 level may be an effect as manifested by E6 and E7 in HPV-positive cervical cancer. Differential cellular effects in miR-143 overexpressed HPV-positive and HPV-negative cervical cancer cell lines suggest that HPV oncoprotein mediates miR-143 cellular functions. / published_or_final_version / Pathology / Master / Master of Medical Sciences
622

Promoter DNA methylation of tumour suppressor microRNA genes in multiple myeloma

Wong, Kwan-yeung., 黃君揚. January 2011 (has links)
Multiple myeloma (MM) is an incurable haematological malignancy. It is characterized clinically by an asymptomatic precursor stage, known as monoclonal gammopathy of undetermined significance (MGUS), which will transform into symptomatic MM at a rate of 1% per year. Gene promoter hypermethylation by catalytic conversion of cytosine into 5?methylcytosine at promoter?associated CpG island is an alternative mechanism of gene inactivation. MicroRNA (miRNA) is a class of short, single?stranded, non?coding RNA molecules, which will repress the expression of target protein by sequence?specific binding to the three prime untranslated region of the corresponding messenger RNA. In carcinogenesis, miRNA can be either oncogenic when tumour suppressor genes are targeted, or tumour suppressive when oncogenes are targeted. Despite reports of hypermethylation of multiple protein?coding tumour suppressor genes, little is known about DNA methylation of non?coding tumour suppressor miRNA genes in MM. This thesis aimed to investigate the role of promoter hypermethylation of tumour suppressor miRNA genes in MM using a candidate miRNA approach. Moreover, the prognostic significance of tumour suppressor miRNA hypermethylation was studied in a uniformly?treated cohort of MM patients. The role of DNA methylation at the promoter of miR?203, miR?34a, miR?34b/c, miR?124?1, miR?129?2 and miR?224 were studied in MM. The tumour suppressor role of miR?34b/c, miR?124?1, miR?203 and miR?224 were demonstrated in human myeloma cell lines (HMCLs). In particular, restoration of miR?203 in MM cells was shown to inhibit cellular proliferation via targeting and hence direct downregulation of a proto?oncogene, cyclic AMP responsive element binding protein. There are several observations in primary MM samples. First, there was frequent methylation of miR?129?2, miR?203 and miR?224 but infrequent methylation of miR?34a, miR?34b/c and miR?124?1 in MM at diagnosis. Second, tumour?specific hypermethylation of each of the miR?203 and miR?224 promoters was detected at comparable frequencies in MGUS, diagnostic and relapsed/progressed MM, and hence implicated as an early event in myelomagenesis. Thirdly, miR?129?2 methylation was more frequent in diagnostic MM than MGUS, and hence implicated in MGUS progression to MM. On the other hand, despite rare miR?34b/c methylation at diagnosis, miR?34b/c methylation was frequent at relapse/progression, thereby implicating miR?34b/c methylation in MM relapse/progression. Fourthly, despite frequent miR?124?1 methylation in HMCLs, miR?124?1 methylation was rare in both diagnostic and relapsed MM marrow samples, suggesting that miR?124?1 methylation was acquired during in vitro cell culture. Finally, the prognostic significance of methylation of a panel of tumour suppressor miRNAs was studied in a uniformly?treated cohort of MM patients, which revealed that miR?224 hypermethylation as an independent favourable prognostic factor for survival. In conclusion, hypermethylation of tumour suppressor miRNAs is implicated in the pathogenesis (miR?203, miR?129?2, miR?224), progression (miR?34b/c), and prognostification (miR?224) of MM. / published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
623

A study of BARX2 expression in esophageal squamous cell carcinoma

Leung, Cheuk-man., 梁卓文. January 2012 (has links)
Background Esophageal carcinoma mainly affects middle aged to elderly males. It ranks the ninth most common cancer world-wide. The main histological types are squamous cell carcinoma and adenocarcinoma. In Hong Kong, esophagus squamous cell carcinoma (ESCC) is by far the more common. BARX2 is a human homeobox gene located at 11q24-q25, encoding a protein of 254 amino acids. Recent researches show that its expression in breast cancer promotes cellular invasion. Objectives The study aimed to test the hypothesis that BARX2 is a prognostic marker in ESCC. BARX2 expression in ESCC was correlated with patient survival and other clinicopathologic parameters in a cohort of patients. Material and Methods Records of ESCC patients were obtained retrospectively from the computerized database of Queen Mary Hospital. ESCC patients, who underwent esophagectomy in the hospital from 1998 to 2005 but without receiving prior chemotherapy or radiotherapy directed to the tumor, were selected. Tumor staging was done according to the 6th edition of AJCC Cancer Staging Manual. Immunohistochemical staining for BARX2 expression was performed on paraffin sections of the primary ESCC tissues sampled in a tissue microarray constructed for research purposes. The pattern of BARX2 expression in nucleus and cell cytoplasm of tumor cells was recorded and the staining intensity scored on a 4-point scale. The scores were statistically analyzed together with the various clinicopathologic parameters. BARX2 expression and patient survival time were analyzed by the log-rank test. Results A total of 78 ESCC patients were recruited. At the time of data analysis, 52 (66.7%) patients were dead. The overall median survival of patients was 14.3 months. BARX2 was found to be mainly expressed in the cytoplasm of tumor cells while non-tumor epithelium showed strong nuclear expression. Patients with high level BARX2 expression had short survival time, though the difference did not reach statistical significance (p=0.075). Within the subgroup of lower T-stage ESCC (T1-3), high level BARX2 expression was significantly associated with shorter survival time (p=0.042). However, differential BARX2 expression did not affect survival time within the group of patients who had advanced stage (T4) disease (p=0.525). In patients who had no regional lymph node metastasis (N0), high level BARX2 expression was associated with shorter survival time (p=0.023). However, when patients had regional lymph node metastases (N1), BARX2 expression did not affect patient survival time (p=0.533). Patients whose ESCC showed moderate differentiation in a three-tier tumor grading system, when accompanied with low level BARX2 expression, had longer survival time (p=0.029). However, BARX2 expression did not affect survival time when ESCC showed either well differentiation (p=0.462) or poor differentiation (p=0.637). Multivariate analysis showed patient age and T-stage to be the only two independent parameters of prognostic significance (p=0.025 and p=0.036 respectively). Conclusions BARX2 expression in ESCC was aberrant and mainly cytoplasmic. It was inversely correlated with patient survival time in early ESCC disease (T1-T3 or N0). BARX2 expression evaluated by immunohistochemistry could be a useful and practical prognostic marker of ESCC in its early stages, when the proper decision on treatment would be critical for the patients. / published_or_final_version / Pathology / Master / Master of Medical Sciences
624

p70 S6 kinase regulation of Mdm2 and p53 in ovarian cancer cells during stress conditions

Yam, Hin-cheung, Bill., 任憲章. January 2011 (has links)
Ovarian cancer is a leading cause of death among of gynecological cancers. Current therapies are ineffective with a poor 5-year survival of only ~25%. p70 S6 kinase (p70 S6K) is a downstream target of the phosphatidylinositol 3-kinase pathway and is frequently activated in human ovarian cancer. However, the molecular targets and signaling pathways by which p70 S6K may affect tumor development and progression are poorly understood. Interestingly, in the laboratory, Mdm2, an important negative regulator of the p53 tumor suppressor, was identified in a yeast two hybrid screening of potential interacting partners for p70 S6K. In this study, I aimed to investigate the specific interaction of p70 S6K and Mdm2 and determine how this may contribute to ovarian tumorigenesis. Using a co-immunoprecipitation assay, the in vivo interaction of p70 S6K and Mdm2 in human ovarian cancer cells was confirmed. Upon UV-induced genotoxic stress, p70 S6K activation was associated with Mdm2 phosphorylation on S166 and subsequent p53 accumulation. This could be reversed by the use of rapamycin and p70 S6K siRNA to inhibit its kinase activity and expression respectively, confirming that the effect was p70 S6K specific. Conversely, ectopic expression of wildtype p70 S6K or a constitutively active mutant of p70 S6K, D3E-E389 (D3E) was sufficient to induce phosphorylation of Mdm2. Moreover, the p70 S6K mediated activation of Mdm2 was independent of p53 mutations. Similar results were observed upon other stress challenges such as hypoxia using hypoxia mimicking agent desferrioxamine (DFX). These findings identify Mdm2 as a new target of p70 S6K and reveal that p70 S6K intervenes the Mdm2-p53 regulatory loop in ovarian cancer, which may provide a survival advantage to cancer cells under stress conditions. / published_or_final_version / Biological Sciences / Master / Master of Philosophy
625

A Sox10-GFP mutant mouse model for the study of abnormal enteric nervous system development in Hirschsprung disease

Zhang, Mei, 章梅 January 2010 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
626

Regulation, activities, and physiological functions of the multidrug efflux pump mdtEF during the anaerobic adaptation of Escherichia coli

Zhang, Yiliang, 张毅良 January 2012 (has links)
Drug efflux represents an important protection mechanism against antibiotics and environmental toxic compounds in bacteria. Efflux genes constitute from 6% to 18% of all transporters in bacterial genomes, yet their regulation, natural substrates, and physiological functions are poorly understood. Among the 20 chromosomally encoded efflux genes in Escherichia coli K-12, only the AcrAB-TolC efflux system is constitutively expressed under the ordinary laboratory growth of E. coli. To explore conditions and circumstances that trigger the expression of additional efflux genes as well as their physiological functions, I examined the expression of all 20 efflux genes under a physiologically relevant circumstance for E. coli, which is anaerobic condition in this study. I found that expression of an RND type efflux pump MdtEF is up-regulated more than 20 fold when E. coli is cultured under anaerobic conditions. Mutagenesis studies revealed that the anaerobically induced expression of mdtEF is subject to the regulation of the anaerobic global transcription factor ArcA. Direct drug efflux and tolerance assay showed that anaerobically grown E. coli cells display an increased efflux activity and enhanced drug tolerance in an MdtEF dependent manner, confirming the functional up-regulation of the efflux pump MdtEF in the anaerobic physiology of E. coli. Since the up-regulation of mdtEF by anaerobic growth occurs in the absence of antibiotics and drugs, I speculate that MdtEF has physiological functions under the anaerobic growth of E. coli. To explore this, I first compared the viability of ΔmdtEF and WT MG1655 strains and found that ΔmdtEF caused a decreased cell survival during prolonged anaerobic growth of E. coli. Interestingly, this defect became more pronounced when cells grow in the presence of 10 mM nitrate, but no defect was observed in ΔmdtEF strain when cells grow in the presence of 40 mM fumarate under the same anaerobic conditions, suggesting that MdtEF has physiological roles relevant to the anaerobic respiration of nitrate. I further found that E. coli cells harboring the deletion of mdtEF are susceptible to indole nitrosative derivatives, a class of toxic by-products formed and accumulated within E. coli when the bacterium respires nitrate under anaerobic conditions, and deletion of the genes responsible for the biosynthesis of indole, tnaAB, restores the growth defect of the ΔmdtEF strain during anaerobic respiration of nitrate. Taken together, I conclude that the multidrug efflux pump MdtEF expels the nitrosated indole derivatives out of E. coli cells under anaerobic conditions. Since the production and accumulation of nitrosyl indole derivatives is ascribed to the reactive nitrogen species elicited when E. coli consumes nitrate, I propose that the up-regulated multidrug efflux pump MdtEF functions to protect E. coli from nitrosative damage in its anaerobic ecological niches. / published_or_final_version / Biological Sciences / Master / Master of Philosophy
627

Phenotypic and genotypic epidemiological studies of Hong Kong Chinese patients with hereditary breast cancer

Kwong, Ava., 鄺靄慧. January 2013 (has links)
Breast cancer is the most common cancer in women in most part of the world. Although there are multiple risk factors which have been reported to be related to breast factors, by far one of the highest risk of breast cancer is the inheritance of the BRCA1 and BRCA2 cancer susceptibility genes. The lifetime risk of breast cancer can be as high as 60-80% for BRCA mutation carriers. As the breast cancer epidemiology and genetic predisposition is increasingly understood, it transpires that ethnic differences exist. Although variations of genetic factors may play a role, the reasons for these differences remain unclear. Most published data are Caucasian based and there are limited publications on hereditary breast cancer in Asians available to date. This thesis hypothesizes that due to the known differences in genetic predisposition in different ethnic groups, it is likely that the mutation spectrum of BRCA mutations and breast cancer characteristics of Hong Kong Chinese, a relatively unexplored cohort, will differ to that of Caucasians. Moreover, the ancestors of local Hong Kong population migrated from Mainland China of which majority were from Southern China. They then remained in Hong Kong and populated and hence similar to smaller countries such as Iceland and Poland where founder mutations are identified, it is likely that a founder mutation will be present. Lastly due to different cultural differences and availability of screening facilities, management options of those found to carry the BRCA mutation may differ to that of other countries. The aims of this study are as follows 1) Perform a comprehensive genetic and phenotypic analysis using Full Gene Sequencing and Multiplex ligation-dependent probe amplification (MLPA) testing of Hong Kong Chinese cohort or breast cancer patients/families who are clinically high risk and to develop a registry to collect data related to this study. 2) To identify the spectrum of BRCA mutation in Hong Kong. 3) To report, any novel mutations, founder mutations, large rearrangements and deletions (using MLPA) if any are found. 4) If founder mutations are present, to develop a fasting and cheaper technique so that rapid screening can be offered. 5) To identify the choice of management in this high risk cohort. A total of 451 clinically high-risk breast and /or ovarian cancer patients from 1 March 2007 to 28 February 2011 were recruited. Based on sequencing results, 59 (13.1%) deleterious BRCA gene mutations were identified: 24 (41%) were in BRCA1 and 35 (59%) in BRCA2. Of the 59 deleterious mutations, 22 (37%) were novel mutations, 8 were BRCA1 and 14 were BRCA2 mutations. Eight recurrent mutations were identified of which four were proven to be founder mutations. These results showed that both BRCA1 and BRCA2 mutations account for a substantial proportion of hereditary breast/ovarian cancer in Sothern Chinese population. By using MLPA, four patients with large genomic rearrangement were identified and one of whom has a de novo BRCA1 mutation encompassing exons 1 to 12 deletion. Such mutations are rare and this de novo mutation has not been previously reported. Moreover another novel BRCA2 variant of unknown significance (c.7806-9T>G), a splice-site intronic mutation, was recharacterized to be pathogenic due to clinical suspicion based on its co-segregation. High Resolution Melting Technique in performing rapid screening for the founder mutations was developed and tested on a further cohort confirming the possibility of the use of founder mutations screening technique in future. Finally, concerning the management choice of BRCA mutation carriers undertaken in Chinese, BRCA mutation carriers in our cohort are more likely to choose intensive surveillance as an option of risk management rather than prophylactic interventions. In summary, this study provides valuable information on mutation spectrum of BRCA1 and BRCA2 in Southern Chinese population. Identifications founder mutations and knowledge of its prevalence in this Chinese population provides important information both to genetic counselling and risk assessment as well as to development of a cost-effective screening strategy. Furthermore, our study on the choice of management of mutation carriers allows us to have a baseline for development of future studies of psychological impact of genetic testing and management related to genetic testing, so that these high risk families can be better supported. / published_or_final_version / Surgery / Doctoral / Doctor of Philosophy
628

Genotypic characterisation of type 2 von Willebrand disease

Tsui, Sze-pui, 崔詩珮 January 2013 (has links)
von Willebrand disease (VWD) is the most common autosomal bleeding disorder. It is divided into type 1, 2 and 3. Type 2 VWD shows qualitative defects in VWF and is further sub-classified into type 2A, 2B, 2M and 2N, each having different functional defects in VWF. Most of the associated mutations are located at the exons in VWF which encode for the affected functional domains. Diagnosis of VWD is currently based on history and phenotypic tests, which can be difficult often times. Therefore, molecular diagnosis of type 2 VWD is an attractive alternative. There are only a few genotypic characterisation studies of type 2 VWD in Chinese. This study aims to provide genetic data of type 2 VWD in Hong Kong. Archive DNA samples of 21non-type 2N type 2 VWD patients (Group 1), 15 type 2N/mild haemophilia A (HA) patients (Group2) and 35 control subjects were recruited. VWF exon 27, 28 and exon 18, 19, 20, 23, 24 were Sanger sequenced in Group 1 and Group 2 subjects, respectively. All seven exons were sequenced in the control subjects. Seven of 21 Group 1 subjects were found to have pathogenic mutation sin exon 28, with 2being novel. Only 1 Group 2 subject was found to be heterozygous for a novel non-synonymous variation at exon 23, the significance of which could not be ascertained. Sixteen benign polymorphisms were detected from exons sequenced in patients and controls. The low pathogenic mutation detection rate may suggest that the pattern of mutation in Chinese is different from other populations. The possibility of misdiagnosis in a proportion of these patients cannot be excluded in view of the known difficulty in patient ascertainment in VWD and the limited phenotypic diagnostic tools available in Hong Kong. Further studies of other exons are indicated to document the mutation spectrum of type 2 VWD in our Chinese population. RNA work and functional studies are required to fully characterise novel sequence variations found. High throughput mutation detection platforms and better phenotypic characterisation will facilitate the introduction of VWD genotyping into routine clinical diagnostics. / published_or_final_version / Pathology / Master / Master of Medical Sciences
629

Identification and characterization of microRNA-135A in cervical carcinogenesis

Leung, Oi-ning, 梁靄嬣 January 2013 (has links)
Cervical cancer is the second major cancer among women worldwide and is associated with persistent infection of human papillomaviruses (HPVs). However, exposure to high-risk type HPVs alone is insufficient for tumor formation. Additional factors are required for the HPV-infected cervical cells to become tumorigenic. Activation of ß-catenin/TCF signaling is essential for transformation of HPV-immortalized keratinocyte into cancer. ß-catenin is excessively expressed in cervical cancer. Dysregulation of microRNAs is profoundly observed in various cancers but their roles in cervical cancer are obscure. MicroRNA-135a (miR-135a) regulates one of the negative regulators of ß-catenin signaling, E3 ubiquitin ligase Seven In Absentia Human Homolog 1 (SIAH1). A 39-fold increase in the expression of miR-135a occurs in early stage cervical cancer. This study hypothesized that over-expression of miR-135a transformed HPV-infected cervical cells to cancer by activating ß-catenin/TCF signaling through down-regulation of SIAH1. In this study, miR-135a was confirmed to be specifically up-regulated in cervical cancer tissues when compared with precancerous lesions. Force-expression of miR-135a induced tumorigenic properties (anchorage independent growth and metastatic abilities) in vitro of a non-tumorigenic cervical epithelial cell line NC104 immortalized by HPV-16 E6 and E7 oncoproteins (NC104 E6/E7). The metastatic activities induced by miR-135a required the presence of E6 and E7 proteins as the activities were not observed in another immortalized cervical cell-line from the same parental cells but without the oncoproteins. The observations were confirmed by the observations that miR-135a knockdown did not impair the above tumorigenic properties in a HPV-negative cervical cancer cell line, but suppressed them in HPV-positive cervical cancer cell lines. The mechanism of action of miR-135a in cervical cancer was evaluated. The tumorigenic effects was due to the inhibitory action of miR-135a on SIAH1 leading to up-regulation of ß-catenin/TCF signaling. MiR-135a force-expression enhanced the growth of the cervical cancer cell line HeLa and NC104 E6/E7-derived tumor in vivo. The effect of miR-135a was partially nullified by SIAH1 force-expression. These observations were in line with expression analyses in cervical biopsies, in which SIAH1 immunoreactivities were inversely correlated, whereas ß-catenin was positively correlated with the expression of miR-135a. The data illustrated an oncogenic role of miR-135a/SIAH1/ß-catenin signaling in cervical cancer formation. The role of miR-135a in the formation of cancer stem cells (CSCs) was also elucidated. The number of CD133+ cells was significantly higher in the miR-135a-transformed NC104 E6/E7 cells than the untreated group. The CD133+ cells isolated from the miR-135a-transformed NC104 E6/E7 possessed self-renewal, differentiation and multidrug resistance properties, up-regulation of miR-135a. They also expressed ß-catenin and the stemness genes OCT4, SSEA-4. CD133+ cells were also identified sporadically in fresh cervical tumors. The observations indicate that CD133+ cervical cancer cells possesses CSC properties. In conclusion, this thesis was the first to identify and characterize the functions of miR-135a as an oncomiR in cervical carcinogenesis. MiR-135a played a pivotal role in malignant transformation and cancer progression in HPV-infected cervical cells through miR-135a/SIAH1/ß-catenin signaling. The microRNA also enhanced the proportion of CD133-expressing cervical CSCs. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
630

Study of abnormal inner ear development in Waardenburg-Shah syndrome using a Sox10-GEP mutant mouse model

Chu, Kit-hang, 朱傑亨 January 2011 (has links)
Sox10 is a high mobility group (HMG) domain transcription factor which is an important regulator for neural crest development. SOX10 mutations have been identified in Waardenburg-Shah syndrome type 4 (WS4) patients who suffer from sensorineural deafness. However, the mechanisms underlying the hearing defect of SOX10-mediated WS4 are unclear. The aim of this study is to elucidate the function of Sox10 during mouse inner ear development using a mutant mouse model, in order to reveal the underlying basis for SOX10 mutation associated sensorineural deafness in WS4 patients. The mammalian inner ear originates from the otic placode epithelium as well as neural crest cells (NCCs). To understand the role of Sox10 in inner development, I investigated the contribution of cranial NCCs to the cochleovestibular ganglion (CVG) by lineage tracing analysis, using Wnt1-cre;ZEG mice in which all NCCs were marked by GFP. Co-expression of GFP-positive cells with the glial marker BFABP suggested that glial cells in the CVG were derived from NCCs. Furthermore, Sox10-expressing NCCs were found to invade the CVG at 30-somite stage. These results suggest a role of Sox10 in regulating cranial NCCs contribution to CVG glia. In our laboratory we have generated a mouse mutant Sox10EGFP in which the Sox10 N-terminal domain was fused to the EGFP reporter. To investigate the function of Sox10 in NCCs invasion and gliogenesis of CVG, phenotypic analysis of Sox10NGFP mutant mouse were performed. EGFP expression in the CVG and inner ear epithelium of Sox10NGFP/+ embryos recapitulated the dynamic expression pattern of Sox10. Sox10NGFP/NGFP mutants displayed a reduced number of migrating NCCs and lacked NCCs or glia in their CVG. Moreover, loss of glial cell in the developing spiral ganglia of Sox10NGFP/NGFP mice led to disorganized fasciculation and degeneration of axonal filaments. These data suggest that Sox10 is required for maintaining the cranial NC stem cell pool, and is also essential for CVG gliogenesis and normal growth and innervation of spiral ganglion neurons. To study the function of Sox10 in regulating cochlear morphogenesis, morphological and histological analysis of mutant cochlear were performed. As illustrated by paint-filling analysis, Sox10NGFP/NGFP mice developed a shortened cochlear duct, reduced cochlear turning and enlarged endolymph lumen. Sensory hair cell patterning in the organ of Corti was normal in the Sox10 mutant as shown by immunohistochemistry analysis, suggesting that cochlear lumen enlargement was not due to disrupted planar cell polarity (PCP) pathway. To explore the molecular basis of Sox10-mediated cochlear morphogenic defect, expression of genes related to cochlear development were examined by qRT-PCR. Candidate genes included those involved in fluid homeostasis, which are known to affect the size of cochlear lumen. Up-regulated expression of Aquaporin 3, a water channel protein in the cochlear epithelium that facilitates water transport across the cell membrane, was observed in Sox10NGFP/NGFP cochlear. These results suggest that Sox10 may regulate cochlear morphogenesis by controlling endolymph homeostasis. In conclusion, Sox10 is required in multiple processes during inner ear development including NCC invasion, gliogenesis and cochlear morphogenesis, and their abnormal development can lead to sensorineural deafness in WS4 syndrome. / published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0739 seconds