801 |
Functional epigenetics identifies novel KRAB-ZNF tumor suppressors in ESCC, NPC and multiple tumors. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
First, expression profiling of ZNFs with CpG islands at 10 clusters of Chr19 was examined in a panel of NPC and ESCC cell lines by semi-quantitative RT-PCR, with adult normal tissues - larynx and esophagus as controls. Several down-regulated genes were identified, and I further focused on 5 candidates: ZNF382, ZNF545, ZFP30, ZNFT1 and ZNFT2. These genes were frequently downregulated in NPC, ESCC, lung, gastric, colon and breast carcinomas. Their promoters were frequently methylated in multiple downregulated cell lines but less in non-tumor cell lines as revealed by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS). Their expression could be restored by pharmacologic or genetic demethylation, suggesting that DNA methylation was directly involved in their silencing. The frequent methylation of these genes indicated they could act as potential biomarkers. / In conclusion, several novel candidate TSGs epigenetically silenced in tumor cells were identified in this study. Their downregulation by promoter methylation was tumor-specific, which could be use as epigenetic biomarkers for diagnosis. / More functional studies were done for ZNF382 and ZNF545, I found that ectopic expression of ZNF382 and ZNF545 in tumor cells lacking endogenous expression could inhibit tumor cell clonogenicity, proliferation and induce apoptosis. I found that ZNF382 suppressed tumorigenesis through mediating heterochromatin formation, as ZNF382 was revealed to be co-localized and interacts with heterochromatin protein. For ZNF545, I found that it is a transcriptional repressor. I further showed that ZNF545 was located in the nucleus and sequestered in the nucleolus. ZNF545 could inhibit tumorigenesis at least partially through downregulating the transcription of target genes or regulating nucleolus function such as ribosome biogenesis. / The development of a tumor from a normal cell is a complex and multi-step process. A large number of oncogenes, tumor suppressor genes (TSGs) and signal transduction pathways are involved in this process. Tumor-specific methylation of TSGs in multiple tumors indicated that it could be used as epigenetic biomarker for molecular diagnosis and therapeutics. / The functions of KRAB-containing proteins are critical to cell differentiation, proliferation, apoptosis and neoplastic transformation. A large number of ZNF genes are located in 10 clusters at chromosome 19. Some of the KRAB-ZNF may function as potential TSGs with epigenetic alterations. Thus, I try to identify silenced novel KRAB-ZNF candidate TSGs through screening chromosome 19. / Cheng, yingduan. / Adviser: Tao Qian. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 110-136). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
802 |
Autopsy study of islet amyloidosis and diabetic glomerulopathy in relation to candidate genetic markers. / 胰島淀粉样变性和糖尿病肾小球病的遗传标志研究 / CUHK electronic theses & dissertations collection / Yi dao dian fen yang bian xing he tang niao bing shen xiao qiu bing de yi chuan biao zhi yan jiuJanuary 2010 (has links)
BACKGROUND AND OBJECTIVES: Type 2 diabetes mellitus (T2DM) is a complex disease with genetic predisposition and histopathological characterization. Pancreatic islet amyloidosis, hyaline arteriolosclerosis, and diabetic glomerulopathy are histopathological hallmarks of T2DM at autopsy examination. The associations of genetic variants with diabetic amyloidosis, arteriosclerosis and glomerulopathy have not been fully elucidated. Several candidate genes including apolipoprotein E (ApoE), insulin degrading-enzyme (IDE) and glucose transporter-1 ( GLUT1) have been reported to increase risk of T2DM in human studies although results are not always consistent. Capitalizing on the pathological hallmarks of T2DM, I used autopsy specimens to investigate the risk associations of polymorphisms of ApoE (rs429358 and rs7412), IDE (rs6583813) and GLUT1 (rs710218) genes with clinical features and specific pathological changes in diabetic kidney and pancreas. I further explored the mechanisms of these associations by evaluating the histopathological changes and protein expression in pancreas and kidney. / CONCLUSIONS: These findings suggest that genetic factors have important effects in the development of tissue-specific changes and chronic complications in T2DM. Islet amyloidosis, arteriosclerosis and glomerulosclerosis in T2DM may share common pathogenetic processes as suggested by the coexistence of chaperone proteins, amyloid P and ApoE. Genetic--pathologic correlation studies are useful in advancing our understanding of the mechanisms of complex diseases such as T2DM. / METHODS AND MATERIALS: Genomic DNA was extracted from white blood cell-concentrated paraffin embedded formalin fixed spleen tissues. Genotyping for ApoE, IDE and GLUT1 polymorphisms was determined by polymerase chain reaction (PCR) and ligase detection reaction (LDR). The pathological changes were blindly assessed in pancreatic and kidney tissues of autopsy specimens. Protein expression of these genes was examined by immunostaining and quantified by using Metamorph image analysis system. / RESULTS: In a consecutive study population of 3693 autopsy specimens containing 328 T2DM and 209 control cases, the respective frequencies of genotypes were as follows: 1) TT of GLUT1 rs710218: 11.2% vs. 11.3%; 2) ApoE epsilon2: 19.4% vs. 10.9%; 3) ApoE epsilon4: 12.1% vs. 9.1% and 4) C carriers of IDE rs6583813: 51.2% vs. 47.9%. The key genotype-phenotype correlations were as follows. 1) In the T2DM cases, GLUT1 rs710218 IT genotype carriers (0% in TT genotype vs. 59.1% in AA genotype, P=0.0407) were less likely but ApoE epsilon 2 allele carriers (57.1% in epsilon2 allele carriers vs. 23.5% in epsilon3 allele carriers P=0.0382) were more likely to have diabetic glomerular hypertrophy than referential group. ApoE epsilon2 carriers showed increased glomerular ApoE protein expression with the immunoreactivity found mainly in the mesangial regions and nodular lesions. On the other hand, ApoE epsilon 3/epsilon4 cases had diffuse ApoE expression in glomerular capillaries. 2) ApoE epsilon4 carriers were more likely to have islet amyloidosis than non-carriers (62.5% in epsilon4 allele carriers vs. 23.6% in epsilon 3 allele carriers P=0.0232). There was immunolocalization of the chaperone proteins, amyloid P and ApoE in both islet amyloid deposits and arterial walls with hyaline arteriolosclerosis. 3) In T2DM cases, IDE rs6583813 C allele carriers had higher prevalence of vascular disorders [hypertension (67.4% vs. 43.6%, P=0.0332), death due to cardiovascular disease (58.1% vs. 25.6%, P=0.0479) and cerebral vascular accident (CVA) (20.9% vs. 2.4%, P=0.0412)1 than T allele carriers. / Guan, Jing. / Adviser: Chan Chung Ngor Juliana. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 175-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
803 |
Prognostic implication of RUNX3 in adult acute myeloid leukemia (AML) and Its role in transcriptional regulation in myeloid cells.January 2013 (has links)
RUNX3是RUNX轉錄因子家族的其中一位成員。RUNX轉錄因子家族是負責調控細胞的增殖和分化。最近研究表明RUNX3可能在造血過程中扮演其中一個角色。可是,它在髓系細胞中的調節角色依然未明。此前,我們發現在核心結合因子急性骨髓性白血病中的融合蛋白RUNX1-ETO和CBFB-MYH11會抑制RUNX3基因表達,並且RUNX3表達水平對兒童急性骨髓性白血病的預後有顯著影響。本研究的目的是要調查RUNX3在成人急性骨髓性白血病的預後價值,並透過闡明RUNX3的轉錄調節去了解其在髓系細胞分化扮演的角色。 / 首先,我們透過實時定量聚合鏈反應去量化在174個成人急性骨髓性白血病的患者骨髓中的RUNX3表達,從而調查RUNX3表達與成人急性骨髓性白血病預後的關係。我們發現低RUNX3表達與較好預後的核型(P=0.045),NPM1基因突變(P=0.014) 和較年青患者(P=0.084) 有關聯。在存活分析中,我們把有完整生存數據的非急性前骨髓性白血病病人分成高RUNX3表達和低RUNX3表達兩組。在成人急性骨髓性白血病中,高RUNX3表達和較差整體存活率(OS) (P=0.011)和無事件存活率(EFS) (P=0.003)有顯著的關聯,這和我們在兒童急性骨髓性白血病所觀察的一致。高RUNX3表達和較差存活率的關係在有野生型FLT3基因的病人中更為明顯(OS, P=0.004; EFS, P=0.001)。由於低RUNX3表達和較好預後核型有關聯,我們進一步只對擁有較差預後核型的病人作將存活分析,發現RUNX3表達仍是影響EFS的一個顯著因素(P=0.017)。在多元分析中,高RUNX3表達在所有病人(EFS, P=0.026, HR=2.433, 95%CI = 1.114-5.356),野生v 型FLT3基因的病人(OS, P=0.016, HR=4.830, 95%CI = 1.335-17.481; EFS, P=0.007, HR=4.103, 95%CI = 1.480-11.372)和較差預後核型的病人(EFS, P=0.024,HR=2.339, 95%CI = 1.117-4.896) 中都是一個獨立的不利預後因素。 / 接著,我們研究RUNX3基因的表達調控。我們鑒定出一個最小啟動子區對於在髓系細胞的基因表達有關鍵作用。透過預測啟動子區和轉錄因子結合位點的分析,顯示這個活性區域含有PU.1,AP-1和Sp1轉錄因子結合位點。我們透過報告基因系統研究,染色質免疫沈澱技術及電泳遷移率改變分析去闡明PU.1,c-Jun及Sp1和相對的轉錄因子結合位點參與RUNX3基因的表達調控。我們進一步透過PU.1基因剔除去證實RUNX3是PU.1的直接下遊靶基因並發現PU.1與RUNX3表達在急性骨髓性白血病人中呈正相關性。 / 由於RUNX3基因表達受到PU.1, c-Jun及Sp1的控制,我們繼續研究RUNX3在髓系細胞分化的功用。我們透過實時定量聚合鏈反應及流式細胞儀檢測發現RUNX3過度表達誘導K562細胞株作單核細胞及粒細胞分化。RUNX3能激活髓系基因的啟動子。它在成熟髓系細胞的表達水平明顯比血幹細胞為高。根據以上結果,RUNX3也許在單核細胞及粒細胞分化中有一定功能。但是,有別於其他癌細胞,RUNNX3不能在髓系細胞誘導細胞凋亡和周期阻滯。 / 總括而言,RUNX3表達在成人急性骨髓性白血病中是一個獨立的預後因素。除此之外,本研究表明RUNX3受到PU.1,c-Jun及Sp1的表達調控並在單核細胞及粒細胞分化中有一定功能。 / RUNX3 is a member of Runt-related domain (RUNX) transcription factor family, which regulates cell proliferation and differentiation. Recent studies have suggested a role of RUNX3 in hematopoiesis. However, its regulatory function in myeloid cells remains unclear. Our group previously showed that RUNX3 expression was repressed by the fusion proteins RUNX1-ETO and CBFB-MYH11 in core-binding factor acute myeloid leukemia (CBF-AML) and had prognostic implication in childhood AML patients. The aim of this study is to investigate the prognostic value of RUNX3 in adult AML patients and its role in myeloid differentiation by elucidating its transcriptional control. / To investigate the relationship between RUNX3 expression and prognosis of adult AML, RUNX3 expression in the diagnostic bone marrow samples from 174 adult AML patients were quantified by real time quantitative PCR (RQ-PCR). Low RUNX3 expression was found to be associated with favorable cytogenetic group (P=0.045), NPM1 mutations (P=0.014) and younger age (P=0.084). For the survival analysis, 110 non-acute promyelocytic leukemia (non-APL) patients with complete survival data were dichotomized into high and low expression groups. Concordant with our previous observation in childhood AML, a significant association between high RUNX3 expression and poorer overall survival (OS) (P=0.011) and event-free survival (EFS) (P=0.003) was observed. The association between high RUNX3 expression and poorer survival was further strengthened in patients with wild-type FLT3 (P=0.004 and 0.001 for OS and EFS respectively). Since low RUNX3 expression was associated with favorable cytogenetics, the analysis was next restricted to patients with non-favorable cytogenetics and RUNX3 expression remained as a significant factor for EFS (P=0.017). In multivariate analysis, high RUNX3 expression was an independent adverse prognostic factor in the whole cohort (EFS, P=0.026, HR=2.433, 95%CI = 1.114-5.356), patients with wild-type FLT3 (OS, P=0.016, HR=4.830, 95%CI = 1.335-17.481; EFS, P=0.007, HR=4.103, 95%CI = 1.480-11.372) and patients with non-favorable genetics (EFS, P=0.024,HR=2.339, 95%CI = 1.117-4.896). / Next, the transcriptional regulation of RUNX3 in myeloid cells was investigated. A minimal promoter region was identified to be critical for myeloid-specific promoter activity. Sequence analysis of the fragment revealed potential transcription factor binding sites for PU.1, AP-1 and Sp1.The involvement of these putative binding sites and corresponding transcription factors in transcriptional regulation of RUNX3 was demonstrated by promoter reporter assay, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA).Furthermore, PU.1 knockdown in U937 cells confirmed RUNX3 was a direct downstream target of PU.1 and a positive correlation between PU.1 and RUNX3 expression was observed in AML patient samples. / As RUNX3 was shown to be transcriptionally regulated by PU.1, c-Jun and Sp1, a role of RUNX3 in myeloid differentiation was postulated. Overexpression of RUNX3 induced both monocytic and granulocytic markers in K562 myeloid cells as detected by flow cytometry and RQ-PCR. RUNX3 was also found to activate myeloid-specific gene promoters and its expression was significantly higher in mature myeloid cells than in hematopoietic stem cells. This suggested a role of RUNX3 in both monocytic and granulocytic differentiation. However, unlike in other solid tumors, RUNX3 did not induce apoptosis and cell cycle arrest in myeloid cells. / In conclusion, RUNX3 expression was an independent prognostic factor in adult AML. Furthermore, our findings showed that RUNX3 was transcriptionally regulated by the master myeloid regulator PU.1 along with c-Jun and Sp1 and implicated a role in monocytic and granulocytic differentiation. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Kwan, Tsz Ki. / Thesis (Ph.D.) Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 171-202). / Abstracts also in Chinese.
|
804 |
Molecular genetic analysis of acetoacetate metabolism in Sinorhizobium melilotiCai, Guo Qin, 1966- January 2001 (has links)
No description available.
|
805 |
Diversity of bacterioplankton and plastid SSU rRNA genes from the eastern and western continental shelves of the United StatesRapp��, Michael Stephen 21 May 1997 (has links)
The phylogenetic diversity of two continental shelf picoplankton
communities was examined by analyzing SSU (16S) ribosomal RNA (rRNA)
genes amplified from environmental DNA with bacterial-specific primers and
the polymerase chain reaction (PCR). Picoplankton populations collected from
the pycnocline (10 m) over the eastern continental shelf of the United States
near Cape Hatteras, North Carolina, and surface seawater (10 m) from the
western continental shelf of the United States 8 km west of Yaquina Head,
Oregon, served as sources of bulk nucleic acids used in this study. A total of
285 SSU rRNA gene clones were analyzed in the two libraries, more than
doubling the number previously available from seawater samples. In contrast
to previous studies of bacterioplankton diversity from the open-ocean, a large
proportion of the rDNA clones recovered in this study (38%) were related to
plastid SSU rRNA genes, including plastids from bacillariophyte,
prymnesiophyte, cryptophyte, chrysophyte, and prasinophyte algae, as well as
a number of unique plastid rRNA gene clones for which no close phylogenetic
relatives were discovered. A majority of the bacterial gene clones recovered (72% of bacterial clones) were closely related to rRNA gene lineages
discovered previously in clone libraries from open-ocean marine habitats,
including the SAR86 cluster (�� Proteobacteria), SAR83, SAR11, and SAR116
clusters (all �� Proteobacteria), the marine Gram-positive cluster
(Actinomycetes), the marine group A/SAR406 cluster, and a cluster of
environmental clones within the flexibacter-cytophaga-bacteroides phylum. A
majority of the remaining bacterial clones were phylogenetically related to the
�� and �� subclasses of the Proteobacteria, including an rDNA lineage within the
Type I methylotroph Glade of the �� subclass. The abundance of plastid rDNAs
and the lack of cyanobacterial-related clones, as well as the presence of ��
Proteobacteria, are features of these coastal picoplankton gene clone libraries
which distinguish them from similar studies of oligotrophic open-ocean sites.
Overall, however, these data indicate that a limited number of as yet
uncultured bacterioplankton lineages, related to those previously observed in
the open-ocean, can account for the majority of cells in these coastal marine
bacterioplankton assemblages. / Graduation date: 1998
|
806 |
Molecular genetics of colorectal cancer and its relevance to epidemiology in Chinese populationYuen, Siu-tsan, Thomas., 袁兆燦. January 2003 (has links)
published_or_final_version / abstract / toc / Medicine / Master / Doctor of Medicine
|
807 |
Transgenerational changes in progeny of compatible pathogen infected plantsKathiria, Palak, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
[No abstract available] / xi, 176 leaves : ill. (chiefly col.) ; 29 cm
|
808 |
Molecular genetic analysis of acetoacetate metabolism in Sinorhizobium melilotiCai, Guo Qin, 1966- January 2001 (has links)
Many bacteria accumulate carbon stores as poly-3-hydroxybutyrate (PHB) when growth is limited but carbon availability is not. This stored carbon can then be utilized during conditions of limited carbon availability. The net PHB accumulation in the cell is dependent on the balance between PHB synthesis and degradation. Sinorhizobium meliloti accumulates PHB in the free-living stage but not in the symbiotic stage. The physiological role of the PHB cycle in S. meliloti is unknown. As a first step to understand the genetics of PHB degradation, transposon-generated mutants that were not able to use PHB degradation intermediates, such as 3-hydroxybutyrate and acetoacetate, as a sole carbon source, were isolated. Genetic mapping revealed that there were at least three chromosomal loci involved in acetoacetate metabolism. Identification of these three loci determined that in S. meliloti: (1) acetoacetyl-CoA synthetase (AcsA), encoded by acsA2 gene, rather than the enzyme acetoacetate:succinyl-CoA transferase, is the enzyme that catalyzes activation of acetoacetate to acetoacetyl-CoA; (2) PHB synthase, encoded by phbC, is required for acetoacetate utilization; (3) a putative transporter protein encoding gene, aau-3, may also be involved in acetoacetate metabolism. acsA2 and aau-3 were 78% linked in co-transduction, while phbC was mapped to somewhere else on the chromosome. Biochemical analysis revealed that acsA2::Tn5 mutants lacked AcsA activity but not acetoacetate:succinyl-CoA transferase activity, while phbC::Tn5 maintained similar level of AcsA activity as wild type in vitro. PHB was absent in the phbC mutant. / One transposon-generated mutant, age-1, showed enhanced growth rate on acetoacetate medium. Genetic mapping and transductional analysis indicated that the location of the mutation in age-1 is tightly linked to acsA2. Fine mapping with PCR and DNA sequence techniques showed that Tn5 in age-1 was located at 132 by upstream of the putative translation start site of acsA2. Gene expression analysis indicated that age-1 insertion results in elevated transcription of acsA2. Thus enhanced growth rate on acetoacetate was due to the increased gene expression. acsA2 transcription was induced by acetoacetate and 3-hydroxybutyrate, and repressed by glucose and acetate. / All mutants formed root nodules that fixed nitrogen with varying decrease of impairment. Acetoacetate metabolism and the PHB degradation are not essential for symbiosis.
|
809 |
Breed susceptibility to enterotoxigenic and enteroaggragative Escherichia coli strains in South African pigs.Chaora, Nyaradzo Stella. January 2013 (has links)
Escherichia coli diarrhoea is the most important source of mortality in piglets. The most frequently isolated strain in enterotoxigenic E. coli diarrhoea is F4ab/ac. Recent studies in South Africa reported non-fimbrial strains such as PAA and EAST-1 to be prevalent. The objective of the study was to determine whether there are breed differences among pigs with respect to E. coli adhesion phenotypes and correlate them to polymorphisms at selected candidate genes in the South African population.
A total of 225 pigs aged 3-12 weeks of the imported (Large White, Landrace and Duroc), local and crossbreds, were sampled from the Eastern Cape and Limpopo provinces of South Africa and genotyped for PCR-RFLP polymorphisms at four candidate genes associated with E. coli F4ab/ac resistance/susceptibility. These genes were Mucin 4 (MUC4), Mucin 13, (MUC13), Mucin 20 (MUC20) and Transferrin Receptor (TFRC). The TFRC and MUC13 genes were less polymorphic, the C allele was close to fixation and the homozygous CC genotype was the most frequent in all three pig populations. There was a significant difference (P <0.05) in allelic and genotypic distribution amongst breeds for the TFRC locus. The g.8227G>C polymorphism in MUC4 segregated in all three breeds and the marker was moderately polymorphic. There was a significant difference (P <0.05) in genotypic distribution amongst breeds for MUC4.The g.191C>T polymorphism in MUC20 segregated in the local and crossbred pigs and was close to fixation in the imported pigs. There was a significant difference (P <0.05) in allelic and genotypic distribution amongst breeds for MUC20, which was moderately polymorphic. There was a reduction in heterozygosity in both the TFRC and MUC13 loci, although MUC4 and MUC20 genes had higher heterozygosity levels. The MUC4 gene had a negative FIS value, indicating outbreeding at this locus. The MUC20, MUC13 and TFRC genes had a positive FIS value, indicating inbreeding at these loci. Overall, the studied population was outbred. Imported pigs in TFRC and MUC20 deviated from Hardy-Weinberg equilibrium (HWE). All breeds were in HWE at the MUC4 and MUC13 genes. There was no linkage disequilibrium observed amongst the analysed loci.
iv
A total of 109 piglets of three breeds (Large White, indigenous and crossbred) aged 3-5 weeks, were investigated for the susceptibility to E. coli F4, PAA strains and EAST-1 toxin. Adhesion tests were conducted on pig intestinal cells, which were viewed under a phase contrast microscope. Three phenotypes were identified as, adhesive, weakly adhesive and non-adhesive. There was a significant association (P <0.05) between breed and level of adherence of the F4 and PAA strains. Highest frequencies of adhesion phenotypes were observed in the indigenous pigs for both F4 and PAA E. coli strains. Large White pigs had the lowest frequency of non-adhesion in F4 and PAA E. coli strains. The F4 strain had a higher (P <0.05) level of adherence compared to PAA and EAST-1 in Large White pigs. Age of pigs had a significant effect on the level of E. coli adherence in indigenous and crossbred pigs (P <0.05). Adhesion of F4 and EAST-1 was higher in weaned indigenous and crossbred pigs, respectively, than in suckling piglets. There was no significant difference between F4 adhesion and the genotypes at all four candidate genes genotypes.
The study showed that both imported and local pig populations carry receptors and are susceptible to F4, PAA and EAST-1 E. coli infections. Indigenous pigs were less susceptible than Large White to E. coli infection. Although polymorphic and segregating in the populations, the MUC4 g.8227G>C and MUC20 g.191C>T mutations were not associated with the adhesion phenotypes and cannot be used in the selection of susceptible animals. / M.Sc.Agric. University of KwaZulu-Natal, Pietermaritzburg 2013.
|
810 |
Simultaneous improvement in black spot resistance and stem strength in field pea (Pisum sativum L.)Beeck, Cameron January 2006 (has links)
[Truncated abstract] Field pea (Pisum sativum) has many benefits when included in the crop rotation system in broadacre grain farming. These benefits include a disease break and improved weed control for cereals and less dependence on nitrogenous fertilisers due to the leguminous nature of pea. Currently, field pea adoption in Australia is low because the crop is susceptible to the fungal disease `black spot’ (Mycosphaerella pinodes) and has low stem strength and a lodged canopy. Black spot causes yield losses averaging 10-15% per year. Lodging results in difficult and costly harvesting, increased disease pressure and increased wind erosion from exposed soil surface when stems break at the basal nodes. This project aimed to address these problems through breeding, and through the application of quantitative genetics theory to a recurrent selection program. A quantitative measurement of relative stem strength was developed which could be used effectively in the field on single plants. Accurate laboratory measurements of stem strength were closely correlated with the field measure of compressed stem thickness in the basal node region. A diallel analysis of stem strength of the progeny of crosses among a range of pea lines with different values of compressed stem thickness concluded that the genetic control of stem strength was additive, with no maternal inheritance or dominance or epistasis effects.
|
Page generated in 0.0868 seconds