• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 2
  • Tagged with
  • 25
  • 25
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelagem do controle gênico do ciclo celular por redes genéticas probabilísticas. / Cell-Cycle Genetic Control Modeling by Probabilistic Genetic Networks

Trepode, Nestor Walter 27 June 2007 (has links)
O ciclo de divisão celular compreende uma seqüência de fenômenos controlados por una complexa rede de regulação gênica muito estável e robusta. Aplicamos as Redes Genéticas Probabilísticas (PGNs) para construir um modelo cuja dinâmica e robustez se assemelham às observadas no ciclo celular biológico. A estrutura de nosso modelo PGN foi inspirada em fatos biológicos bem estabelecidos tais como a existência de subsistemas integradores, realimentação negativa e positiva e caminhos de sinalização redundantes. Nosso modelo representa as interações entre genes como processos estocásticos e apresenta uma forte robustez na presença de ruido e variações moderadas dos parâmetros. Um modelo determinístico recentemente publicado do ciclo celular da levedura não resiste a condições de ruido que nosso modelo suporta bem. A adição de mecanismos de auto excitação, permite a nosso modelo apresentar uma atividade oscilatória similar à observada no ciclo celular embrionário. Nossa abordagem de modelar e simular o comportamento observado usando mecanismos de controle biológico conhecidos fornece hipóteses plausíveis de como a regulação subjacente pode ser realizada na célula. A pesquisa atualmente em curso procura identificar tais mecanismos de regulação no ciclo celular da levedura, usando dados de expressão gênica provenientes de medições seqüenciais de microarray. / The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a Probabilistic Genetic Network (PGN) to construct an hypothetical model with dynamical behaviour and robustness typical of the biological cell-cycle. The structure of our PGN model was inspired in well established biological facts such as the existence of integrator subsystems, negative and positive feedback loops and redundant signaling pathways. Our model represents genes\' interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model collapses upon noise conditions that our PGN model supports well. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle. Our approach of modeling and simulating the observed behavior by known biological control mechanisms provides plausible hypotheses of how the underlying regulation may be performed in the cell. The ongoing research is lead to identify such regulation mechanisms in the yeast cell-cycle from time-series microarray gene expression data.
22

"Redução de dimensionalidade utilizando entropia condicional média aplicada a problemas de bioinformática e de processamento de imagens" / Dimensionality reduction using mean conditional entropy applied for bioinformatics and image processing problems

Martins Junior, David Correa 22 September 2004 (has links)
Redução de dimensionalidade é um problema muito importante da área de reconhecimento de padrões com aplicação em diversos campos do conhecimento. Dentre as técnicas de redução de dimensionalidade, a de seleção de características foi o principal foco desta pesquisa. De uma forma geral, a maioria dos métodos de redução de dimensionalidade presentes na literatura costumam privilegiar casos nos quais os dados sejam linearmente separáveis e só existam duas classes distintas. No intuito de tratar casos mais genéricos, este trabalho propõe uma função critério, baseada em sólidos princípios de teoria estatística como entropia e informação mútua, a ser embutida nos algoritmos de seleção de características existentes. A proposta dessa abordagem é tornar possível classificar os dados, linearmente separáveis ou não, em duas ou mais classes levando em conta um pequeno subespaço de características. Alguns resultados com dados sintéticos e dados reais foram obtidos confirmando a utilidade dessa técnica. Este trabalho tratou dois problemas de bioinformática. O primeiro trata de distinguir dois fenômenos biológicos através de seleção de um subconjunto apropriado de genes. Foi estudada uma técnica de seleção de genes fortes utilizando máquinas de suporte vetorial (MSV) que já vinha sendo aplicada para este fim em dados de SAGE do genoma humano. Grande parte dos genes fortes encontrados por esta técnica para distinguir tumores de cérebro (glioblastoma e astrocytoma), foram validados pela metodologia apresentada neste trabalho. O segundo problema que foi tratado neste trabalho é o de identificação de redes de regulação gênica, utilizando a metodologia proposta, em dados produzidos pelo trabalho de DeRisi et al sobre microarray do genoma do Plasmodium falciparum, agente causador da malária, durante as 48 horas de seu ciclo de vida. O presente texto apresenta evidências de que a utilização da entropia condicional média para estimar redes genéticas probabilísticas (PGN) pode ser uma abordagem bastante promissora nesse tipo de aplicação. No contexto de processamento de imagens, tal técnica pôde ser aplicada com sucesso em obter W-operadores minimais para realização de filtragem de imagens e reconhecimento de texturas. / Dimensionality reduction is a very important pattern recognition problem with many applications. Among the dimensionality reduction techniques, feature selection was the main focus of this research. In general, most dimensionality reduction methods that may be found in the literature privilegiate cases in which the data is linearly separable and with only two distinct classes. Aiming at covering more generic cases, this work proposes a criterion function, based on the statistical theory principles of entropy and mutual information, to be embedded in the existing feature selection algorithms. This approach allows to classify the data, linearly separable or not, in two or more classes, taking into account a small feature subspace. Results with synthetic and real data were obtained corroborating the utility of this technique. This work addressed two bioinformatics problems. The first is about distinguishing two biological fenomena through the selection of an appropriate subset of genes. We studied a strong genes selection technique using support vector machines (SVM) which has been applied to SAGE data of human genome. Most of the strong genes found by this technique to distinguish brain tumors (glioblastoma and astrocytoma) were validated by the proposed methodology presented in this work. The second problem covered in this work is the identification of genetic network regulation, using our proposed methodology, from data produced by work of DeRisi et al about microarray of the Plasmodium falciparum genome, malaria agent, during 48 hours of its life cycle. This text presents evidences that using mean conditional entropy to estimate a probabilistic genetic network (PGN) may be very promising. In the image processing context, it is shown that this technique can be applied to obtain minimal W-operators that perform image filtering and texture recognition.
23

Stochastic process analysis for Genomics and Dynamic Bayesian Networks inference.

Lebre, Sophie 14 September 2007 (has links) (PDF)
This thesis is dedicated to the development of statistical and computational methods for the analysis of DNA sequences and gene expression time series.<br /><br />First we study a parsimonious Markov model called Mixture Transition Distribution (MTD) model which is a mixture of Markovian transitions. The overly high number of constraints on the parameters of this model hampers the formulation of an analytical expression of the Maximum Likelihood Estimate (MLE). We propose to approach the MLE thanks to an EM algorithm. After comparing the performance of this algorithm to results from the litterature, we use it to evaluate the relevance of MTD modeling for bacteria DNA coding sequences in comparison with standard Markovian modeling.<br /><br />Then we propose two different approaches for genetic regulation network recovering. We model those genetic networks with Dynamic Bayesian Networks (DBNs) whose edges describe the dependency relationships between time-delayed genes expression. The aim is to estimate the topology of this graph despite the overly low number of repeated measurements compared with the number of observed genes. <br /><br />To face this problem of dimension, we first assume that the dependency relationships are homogeneous, that is the graph topology is constant across time. Then we propose to approximate this graph by considering partial order dependencies. The concept of partial order dependence graphs, already introduced for static and non directed graphs, is adapted and characterized for DBNs using the theory of graphical models. From these results, we develop a deterministic procedure for DBNs inference. <br /><br />Finally, we relax the homogeneity assumption by considering the succession of several homogeneous phases. We consider a multiple changepoint<br />regression model. Each changepoint indicates a change in the regression model parameters, which corresponds to the way an expression level depends on the others. Using reversible jump MCMC methods, we develop a stochastic algorithm which allows to simultaneously infer the changepoints location and the structure of the network within the phases delimited by the changepoints. <br /><br />Validation of those two approaches is carried out on both simulated and real data analysis.
24

"Redução de dimensionalidade utilizando entropia condicional média aplicada a problemas de bioinformática e de processamento de imagens" / Dimensionality reduction using mean conditional entropy applied for bioinformatics and image processing problems

David Correa Martins Junior 22 September 2004 (has links)
Redução de dimensionalidade é um problema muito importante da área de reconhecimento de padrões com aplicação em diversos campos do conhecimento. Dentre as técnicas de redução de dimensionalidade, a de seleção de características foi o principal foco desta pesquisa. De uma forma geral, a maioria dos métodos de redução de dimensionalidade presentes na literatura costumam privilegiar casos nos quais os dados sejam linearmente separáveis e só existam duas classes distintas. No intuito de tratar casos mais genéricos, este trabalho propõe uma função critério, baseada em sólidos princípios de teoria estatística como entropia e informação mútua, a ser embutida nos algoritmos de seleção de características existentes. A proposta dessa abordagem é tornar possível classificar os dados, linearmente separáveis ou não, em duas ou mais classes levando em conta um pequeno subespaço de características. Alguns resultados com dados sintéticos e dados reais foram obtidos confirmando a utilidade dessa técnica. Este trabalho tratou dois problemas de bioinformática. O primeiro trata de distinguir dois fenômenos biológicos através de seleção de um subconjunto apropriado de genes. Foi estudada uma técnica de seleção de genes fortes utilizando máquinas de suporte vetorial (MSV) que já vinha sendo aplicada para este fim em dados de SAGE do genoma humano. Grande parte dos genes fortes encontrados por esta técnica para distinguir tumores de cérebro (glioblastoma e astrocytoma), foram validados pela metodologia apresentada neste trabalho. O segundo problema que foi tratado neste trabalho é o de identificação de redes de regulação gênica, utilizando a metodologia proposta, em dados produzidos pelo trabalho de DeRisi et al sobre microarray do genoma do Plasmodium falciparum, agente causador da malária, durante as 48 horas de seu ciclo de vida. O presente texto apresenta evidências de que a utilização da entropia condicional média para estimar redes genéticas probabilísticas (PGN) pode ser uma abordagem bastante promissora nesse tipo de aplicação. No contexto de processamento de imagens, tal técnica pôde ser aplicada com sucesso em obter W-operadores minimais para realização de filtragem de imagens e reconhecimento de texturas. / Dimensionality reduction is a very important pattern recognition problem with many applications. Among the dimensionality reduction techniques, feature selection was the main focus of this research. In general, most dimensionality reduction methods that may be found in the literature privilegiate cases in which the data is linearly separable and with only two distinct classes. Aiming at covering more generic cases, this work proposes a criterion function, based on the statistical theory principles of entropy and mutual information, to be embedded in the existing feature selection algorithms. This approach allows to classify the data, linearly separable or not, in two or more classes, taking into account a small feature subspace. Results with synthetic and real data were obtained corroborating the utility of this technique. This work addressed two bioinformatics problems. The first is about distinguishing two biological fenomena through the selection of an appropriate subset of genes. We studied a strong genes selection technique using support vector machines (SVM) which has been applied to SAGE data of human genome. Most of the strong genes found by this technique to distinguish brain tumors (glioblastoma and astrocytoma) were validated by the proposed methodology presented in this work. The second problem covered in this work is the identification of genetic network regulation, using our proposed methodology, from data produced by work of DeRisi et al about microarray of the Plasmodium falciparum genome, malaria agent, during 48 hours of its life cycle. This text presents evidences that using mean conditional entropy to estimate a probabilistic genetic network (PGN) may be very promising. In the image processing context, it is shown that this technique can be applied to obtain minimal W-operators that perform image filtering and texture recognition.
25

Modelagem do controle gênico do ciclo celular por redes genéticas probabilísticas. / Cell-Cycle Genetic Control Modeling by Probabilistic Genetic Networks

Nestor Walter Trepode 27 June 2007 (has links)
O ciclo de divisão celular compreende uma seqüência de fenômenos controlados por una complexa rede de regulação gênica muito estável e robusta. Aplicamos as Redes Genéticas Probabilísticas (PGNs) para construir um modelo cuja dinâmica e robustez se assemelham às observadas no ciclo celular biológico. A estrutura de nosso modelo PGN foi inspirada em fatos biológicos bem estabelecidos tais como a existência de subsistemas integradores, realimentação negativa e positiva e caminhos de sinalização redundantes. Nosso modelo representa as interações entre genes como processos estocásticos e apresenta uma forte robustez na presença de ruido e variações moderadas dos parâmetros. Um modelo determinístico recentemente publicado do ciclo celular da levedura não resiste a condições de ruido que nosso modelo suporta bem. A adição de mecanismos de auto excitação, permite a nosso modelo apresentar uma atividade oscilatória similar à observada no ciclo celular embrionário. Nossa abordagem de modelar e simular o comportamento observado usando mecanismos de controle biológico conhecidos fornece hipóteses plausíveis de como a regulação subjacente pode ser realizada na célula. A pesquisa atualmente em curso procura identificar tais mecanismos de regulação no ciclo celular da levedura, usando dados de expressão gênica provenientes de medições seqüenciais de microarray. / The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a Probabilistic Genetic Network (PGN) to construct an hypothetical model with dynamical behaviour and robustness typical of the biological cell-cycle. The structure of our PGN model was inspired in well established biological facts such as the existence of integrator subsystems, negative and positive feedback loops and redundant signaling pathways. Our model represents genes\' interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model collapses upon noise conditions that our PGN model supports well. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle. Our approach of modeling and simulating the observed behavior by known biological control mechanisms provides plausible hypotheses of how the underlying regulation may be performed in the cell. The ongoing research is lead to identify such regulation mechanisms in the yeast cell-cycle from time-series microarray gene expression data.

Page generated in 0.0525 seconds