• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 4
  • 4
  • Tagged with
  • 34
  • 34
  • 19
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cellular Analyses of the RAD51-related Homologous Recombination Repair Proteins

Gruver, Aaron Matthew 19 September 2005 (has links)
No description available.
22

Genetic fidelity and genome stability in the hyperthermophilic archaeon Sulfolobus acidocaldarius

Mao, Dominic M. 16 October 2012 (has links)
No description available.
23

Genomová nestabilita spojená se vznikem RNA:DNA hybridů a mechanismy jejího potlačení / Genomic instability associated with formation of RNA:DNA hybrids and molecular mechanisms of its suppression

Naščáková, Zuzana January 2021 (has links)
One of the most common infections of a human organism is an infection of stomach induced by pathogenic bacteria Helicobacter pylori (H. pylori). It is estimated that every second person is infected, with even higher prevalence in developing countries. As a quiet enemy, H. pylori can colonise a human stomach for decades without manifestation of infection-associated symptoms. However, chronic infection may cause severe damage to the stomach tissue, subsequently leading to the development of gastric diseases, including gastritis and ulcer disease. H. pylori infection is also a driving cause of gastric cancer, with 80% of gastric cancers being associated with chronic infection. H. pylori ensures its life-long persistence in a human host organism via the action of its virulence factors, which have a pleiotropic effect on multiple systems, mostly acting on the attenuation of a human immune system and the induction of atrophy of stomach tissue. The irreversible changes of stomach epithelium are induced by activation of an innate immune response in H. pylori-exposed epithelial cells through the stimulation of ALPK1/TIFA/NF-κB signalling pathway upon a recognition of β-ADP heptose, an intermediate product of bacterial lipopolysaccharide biosynthesis, and consequently leading to the formation of DNA...
24

The role of ubiquitylation in regulating apurinic/apyrimidinic endonuclease 1

Meisenberg, Cornelia January 2012 (has links)
Apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair factor involved in the DNA base excision repair (BER) pathway that is required for the maintenance of genome stability. In this pathway, APE1 cleaves DNA at an abasic site to generate a DNA single strand break, allowing for repair completion by a DNA polymerase and a DNA ligase. High levels of APE1 have been observed in multiple cancer types however it is not understood if this contributes to cancer onset and development. What is known is that these cancers tend to display increased resistance to DNA damaging treatments and APE1 is therefore considered a key target for inhibition in the treatment of APE1-overexpressing cancers. Considering the relevance of modulating APE1 levels in disease and cancer treatment, very little is known about how cellular APE1 levels are regulated. Our lab has previously shown that the levels of the BER factors Pol β, XRCC1 and DNA Lig IIIα are regulated by ubiquitylation-mediated proteasomal degradation. The aim of this doctoral thesis was therefore to determine if ubiquitylation also regulates APE1 stability in cells. I present evidence that APE1 is ubiquitylated in cells and have identified the UBR3 E3 ligase that is responsible for this activity. Using mouse embryonic fibroblasts generated from Ubr3 knockout mice, I demonstrate that UBR3 regulates APE1 cellular levels. I furthermore show that a loss of cellular UBR3 leads to the formation of DNA double strand breaks and genome instability.
25

Functional analysis of Drosophila melanogaster linker histone dH1

Vujatovic, Olivera, 1981- 27 July 2012 (has links)
We did functional characterisation of Drosophila melanogaster linker histone, dH1. In the mutant state for this protein, we observed structural changes in polytene chromosomes chromocenter and nucleoli of mutant larvae. In addition, we performed a microarray analysis in H1 mutant background in order to determine contribution of dH1 to gene expression regulation. We determined effects of dH1 loss in different types of chromatin and we identified groups of differentially expressed (DE) genes, groups in sense of physical clusters of genes and genomic elements rather than groups of functionally related genes. We found that dH1 affects in greater extent expression of heterochromatin genes compared to its effect on euchromatin genes; that dH1 regulates transcription in a regional manner, since the genes physically nearest to the most DE genes tend to be upregulated as well; and that dH1 is negatively regulating expression of transposable elements and members of certain gene families. In addition, we found that dH1 is necessary for preserving genome stability. Among DE transposable elements we detected R1 and R2 retrotransposons, elements that are integrating specifically in rRNA locus. We showed that activation of their transcription is also upregulating expression of aberrant, transposon-inserted, rDNA units of the locus. In this regard we observed an accumulation of extra-chromosomal rDNA circles, increased γ-H2Av content, stop in cell proliferation and activation of apoptosis. Altogether, these results are revealing so far unknown role of histone H1 in preserving genome stability and its effects on cell proliferation.
26

Création de mutants cdc5 en vue de l’identification des substrats de PLK/Cdc5 lors de la réponse d’adaptation aux dommages à l’ADN

Daoud, Amani 02 1900 (has links)
No description available.
27

Funkční in vitro analýza alternativních sestřihových variant genu BRCA1 / The functional in vitro analysis of the BRCA1alternative splicing variants

Ševčík, Jan January 2012 (has links)
BACKGROUND: The inactivation of the tumor suppressor gene BRCA1 is a predisposing factor for a breast/ovarian cancer development. Formation of cancer-specific alternative splicing variants with aberrant biological properties can represent additional mechanism decreasing the overall BRCA1 activity in DNA double strand break (DDSB) repair. In this study, we analyzed BRCA1 alternative splicing variants BRCA114-15 and 17-19 ascertained previously during the screening of high-risk breast cancer individuals. METHODS: We established a stable MCF-7 cell line-based model system for an in vitro analysis of BRCA1 variants. Using this system, we analyzed the impact of BRCA114-15 and 17-19 variants on DNA repair kinetics using comet assay and confocal immunomicroscopy. The capacity of DNA repair was assessed directly by an in vitro NHEJ assay and indirectly by a mitomycin C sensitivity test. The proliferation activities were determined by a clonogenic assay and growth curves. RESULTS: Overexpression of BRCA114-15 and 17-19 increases the endogenous level of DNA damage, slows down the DDSB repair, and decelerates the initial phase of radiation-induced foci formation and prolongs their persistence. Moreover, BRCA114-15 and 17-19 differentially influence the activity of HR and NHEJ and sensitivity of MCF-7 cells to ionizing...
28

Funkční in vitro analýza alternativních sestřihových variant genu BRCA1 / The functional in vitro analysis of the BRCA1alternative splicing variants

Ševčík, Jan January 2012 (has links)
BACKGROUND: The inactivation of the tumor suppressor gene BRCA1 is a predisposing factor for a breast/ovarian cancer development. Formation of cancer-specific alternative splicing variants with aberrant biological properties can represent additional mechanism decreasing the overall BRCA1 activity in DNA double strand break (DDSB) repair. In this study, we analyzed BRCA1 alternative splicing variants BRCA114-15 and 17-19 ascertained previously during the screening of high-risk breast cancer individuals. METHODS: We established a stable MCF-7 cell line-based model system for an in vitro analysis of BRCA1 variants. Using this system, we analyzed the impact of BRCA114-15 and 17-19 variants on DNA repair kinetics using comet assay and confocal immunomicroscopy. The capacity of DNA repair was assessed directly by an in vitro NHEJ assay and indirectly by a mitomycin C sensitivity test. The proliferation activities were determined by a clonogenic assay and growth curves. RESULTS: Overexpression of BRCA114-15 and 17-19 increases the endogenous level of DNA damage, slows down the DDSB repair, and decelerates the initial phase of radiation-induced foci formation and prolongs their persistence. Moreover, BRCA114-15 and 17-19 differentially influence the activity of HR and NHEJ and sensitivity of MCF-7 cells to ionizing...
29

Un rôle pour les protéines de la famille Whirly dans le maintien de la stabilité du génome des organelles chez Arabidopsis thaliana

Maréchal, Alexandre 07 1900 (has links)
Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles. / Maintenance of genome stability is essential for the accurate propagation of genetic information and for cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively little is known about how organelle genomes maintain a stable structure. This study implicates the single-stranded nucleic acid-binding proteins of the Whirly family in the maintenance of plant organelle genome stability. Here we report that the plastid-localized single-stranded DNA binding proteins of the Whirly family are required for plastid genome stability in Arabidopsis thaliana and Zea mays. Absence of plastidial Whirlies favors the accumulation of rearranged molecules that arise through a non-homologous recombination mechanism mediated by regions of microhomology. This mechanism is similar to the microhomology-mediated break-induced replication (MMBIR) described in bacteria, yeast and humans. Additionally we show that plant organelles can repair double-strand breaks using a MMBIR-like pathway. Plants lacking Whirly proteins accumulate elevated levels of microhomology-mediated DNA rearrangements upon double-strand break induction, indicating that Whirlies also contribute to the accurate repair of plant organelle genomes. Using biological and structural data, we propose a working model in which Whirlies modulate the access of repair proteins and complementary DNA to single-stranded regions, thereby regulating the choice of repair pathways and maintaining plant organelle genome stability. The various aspects of this model will be tested in future experiments which should allow a better understanding of the mechanisms underlying genome stability in plant organelles.
30

Un rôle pour les protéines de la famille Whirly dans le maintien de la stabilité du génome des organelles chez Arabidopsis thaliana

Maréchal, Alexandre 07 1900 (has links)
Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles. / Maintenance of genome stability is essential for the accurate propagation of genetic information and for cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively little is known about how organelle genomes maintain a stable structure. This study implicates the single-stranded nucleic acid-binding proteins of the Whirly family in the maintenance of plant organelle genome stability. Here we report that the plastid-localized single-stranded DNA binding proteins of the Whirly family are required for plastid genome stability in Arabidopsis thaliana and Zea mays. Absence of plastidial Whirlies favors the accumulation of rearranged molecules that arise through a non-homologous recombination mechanism mediated by regions of microhomology. This mechanism is similar to the microhomology-mediated break-induced replication (MMBIR) described in bacteria, yeast and humans. Additionally we show that plant organelles can repair double-strand breaks using a MMBIR-like pathway. Plants lacking Whirly proteins accumulate elevated levels of microhomology-mediated DNA rearrangements upon double-strand break induction, indicating that Whirlies also contribute to the accurate repair of plant organelle genomes. Using biological and structural data, we propose a working model in which Whirlies modulate the access of repair proteins and complementary DNA to single-stranded regions, thereby regulating the choice of repair pathways and maintaining plant organelle genome stability. The various aspects of this model will be tested in future experiments which should allow a better understanding of the mechanisms underlying genome stability in plant organelles.

Page generated in 0.0692 seconds