• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Coevolutionary Genetics of Medicago truncatula and its Associated Rhizobia

Gorton, Amanda 04 December 2012 (has links)
Contrary to the predictions of numerous theoretical models, variation in partner quality continues to persist in mutualisms, including in the symbiosis between legumes and rhizobia. One potential explanation for the maintenance of this genetic diversity is genotype × genotype interactions, however it is unknown which genetic regions might underlie these interactions. To investigate this question, I performed a quantitative trait loci mapping experiment with two different rhizobium strains to locate potential regions of the genome influencing genotype × genotype interactions between the legume Medicago truncatula and its symbiont Sinorhizobium meliloti. I found no evidence for genotype × genotype or QTL × rhizobium interactions, however some of the QTLs colocalized with genes involved in the symbiosis signaling pathway, suggesting variation in these genes could potentially affect plant performance and fitness traits. These findings have important implications for the evolutionary interactions between legumes and rhizobia, and the genetic architecture of Medicago truncatula.
2

The Coevolutionary Genetics of Medicago truncatula and its Associated Rhizobia

Gorton, Amanda 04 December 2012 (has links)
Contrary to the predictions of numerous theoretical models, variation in partner quality continues to persist in mutualisms, including in the symbiosis between legumes and rhizobia. One potential explanation for the maintenance of this genetic diversity is genotype × genotype interactions, however it is unknown which genetic regions might underlie these interactions. To investigate this question, I performed a quantitative trait loci mapping experiment with two different rhizobium strains to locate potential regions of the genome influencing genotype × genotype interactions between the legume Medicago truncatula and its symbiont Sinorhizobium meliloti. I found no evidence for genotype × genotype or QTL × rhizobium interactions, however some of the QTLs colocalized with genes involved in the symbiosis signaling pathway, suggesting variation in these genes could potentially affect plant performance and fitness traits. These findings have important implications for the evolutionary interactions between legumes and rhizobia, and the genetic architecture of Medicago truncatula.
3

A design of experiments approach for engineering carbon metabolism in the yeast Saccharomyces cerevisiae

Brown, Steven Richard January 2016 (has links)
The proven ability to ferment Saccharomyces cerevisiae on a large scale presents an attractive target for producing chemicals and fuels from sustainable sources. Efficient and predominant carbon flux through to ethanol is a significant engineering issue in the development of this yeast as a multi-product cell chassis used in biorefineries. In order to evaluate diversion of carbon flux away from ethanol, combinatorial deletions were investigated in genes encoding the six isozymes of alcohol dehydrogenase (ADH), which catalyse the terminal step in ethanol production. The scarless, dominant and counter- selectable amdSYM gene deletion method was optimised for generation of a combinatorial ADH knockout library in an industrially relevant strain of S. cerevisiae. Current understanding of the individual ADH genes fails to fully evaluate genotype-by-genotype and genotype-by-environment interactions: rather, further research of such a complex biological process requires a multivariate mathematical modelling approach. Application of such an approach using the Design of Experiments (DoE) methodology is appraised here as essential for detailed empirical evaluation of complex systems. DoE provided empirical evidence that in S. cerevisiae: i) the ADH2 gene is not associated with producing ethanol under anaerobic culture conditions in combination with 25 g l-1 glucose substrate concentrations; ii) ADH4 is associated with increased ethanol production when the cell is confronted with a zinc-limited [1 μM] environment; and iii) ADH5 is linked with the production of ethanol, predominantly at pH 4.5. A successful metabolic engineering strategy is detailed which increases the product portfolio of S. cerevisiae, currently used for large-scale production of bioethanol. Heterologous expression of the cytochrome P450 fatty acid peroxygenase from Jeotgalicoccus sp., OleTJE, fused to the RhFRED reductase from Rhodococcus sp. NCIMB 978 converted free fatty acid precursors to C13, C15 and C17 alkenes (3.81 ng μl-1 total alkene concentration).

Page generated in 0.0768 seconds