• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regional Geoid Determination Methods for the Era of Satellite Gravimetry : Numerical Investigations Using Synthetic Earth Gravity Models

Ågren, Jonas January 2004 (has links)
It is the purpose of this thesis to investigate different regional geoid determination methods with respect to their feasibility for use with a future GOCE satellite-only Earth Gravity Model (EGM). This includes investigations of various techniques, which involve different approximations, as well as the expected accuracy. Many, but not all, of these tasks are tested by means of Synthetic Earth Gravity Models (SEGMs). The study is limited to remove-compute-restore methods using Helmert condensation and to Sjöberg's combined approach (method with additive corrections). First, a number of modifications of Stokes' formula are tested with respect to their compatibility with a GOCE EGM having negligible commission error. It is concluded that the least squares modification method should be preferred. Next, two new point-mass SEGMs are constructed in such a way that the resulting models have degree variances representative for the full and topographically reduced gravity fields, respectively. These SEGMs are then used to test different methods for modified Stokes' integration and downward continuation. It is concluded that the combined method requires dense observations, obtained from the given surface anomalies by interpolation using a reduction for all known density anomalies, most notably the topography. Examples of other conclusions are that the downward continuation method of Sjöberg (2003a) performs well numerically. To be able to test topographic corrections, another SEGM is constructed starting from the reduced point-mass model, to which the topography, bathymetry and isostatic compensation are added. This model, which is called the Nordic SEGM, is then applied to test one strict and one more approximate approach to Helmert's condensation. One conclusion here is that Helmert's 1st method with the condensation layer 21 km below sea level should be preferred to Helmert's 2nd condensation strategy. The thesis ends with a number of investigations of Sjöberg's combined approach to geoid determination, which include tests using the Nordic SEGM. It is concluded that the method works well in practice for a region like Scandinavia. It is finally shown how the combined strategy may preferably be used to estimate height anomalies directly.
2

Regional Geoid Determination Methods for the Era of Satellite Gravimetry : Numerical Investigations Using Synthetic Earth Gravity Models

Ågren, Jonas January 2004 (has links)
<p>It is the purpose of this thesis to investigate different regional geoid determination methods with respect to their feasibility for use with a future GOCE satellite-only Earth Gravity Model (EGM). This includes investigations of various techniques, which involve different approximations, as well as the expected accuracy. Many, but not all, of these tasks are tested by means of Synthetic Earth Gravity Models (SEGMs). The study is limited to remove-compute-restore methods using Helmert condensation and to Sjöberg's combined approach (method with additive corrections).</p><p>First, a number of modifications of Stokes' formula are tested with respect to their compatibility with a GOCE EGM having negligible commission error. It is concluded that the least squares modification method should be preferred.</p><p>Next, two new point-mass SEGMs are constructed in such a way that the resulting models have degree variances representative for the full and topographically reduced gravity fields, respectively. These SEGMs are then used to test different methods for modified Stokes' integration and downward continuation. It is concluded that the combined method requires dense observations, obtained from the given surface anomalies by interpolation using a reduction for all known density anomalies, most notably the topography. Examples of other conclusions are that the downward continuation method of Sjöberg (2003a) performs well numerically.</p><p>To be able to test topographic corrections, another SEGM is constructed starting from the reduced point-mass model, to which the topography, bathymetry and isostatic compensation are added. This model, which is called the Nordic SEGM, is then applied to test one strict and one more approximate approach to Helmert's condensation. One conclusion here is that Helmert's 1st method with the condensation layer 21 km below sea level should be preferred to Helmert's 2nd condensation strategy.</p><p>The thesis ends with a number of investigations of Sjöberg's combined approach to geoid determination, which include tests using the Nordic SEGM. It is concluded that the method works well in practice for a region like Scandinavia. It is finally shown how the combined strategy may preferably be used to estimate height anomalies directly.</p>
3

Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula : with Some Geodynamic Interpretations

Kiamehr, Ramin January 2006 (has links)
Iran is one of the most complicated areas in the world from the view of rough topography, tectonic activity, large lateral density and geoidal height variations. The computation of a regional gravimetric geoid model with high accuracy in mountainous regions, especially with sparse data, is a difficult task that needs a special attention to obtain reliable results which can meet the needs of the today geodetic community. In this research different heterogeneous data has been used, which includes gravity anomalies, the high-resolution SRTM Digital Elevation Model (DEM), recently published GRACE Global Geopotential Models (GGMs), geological maps and GPS/levelling data. The above data has been optimally combined through the least-squares modification of Stokes formula with additive corrections. Regarding the data evaluation and refinement, the cross-validation technique has been used for detection of outliers. Also, several GGMs and DEMs are evaluated with GPS/levelling data. The impact of utilizing a high resolution SRTM DEM to improve the accuracy of the geoid model has been studied. Also, a density variation model has been established, and its effect on the accuracy of the geoid was investigated. Thereafter a new height datum for Iran was established based on the corrective surface idea. Finally, it was found that there is a significant correlation between the lateral geoid slope and the tectonic activities in Iran. We show that our hybrid gravimetric geoid model IRG04 agrees considerably better with GPS/levelling than any of the other recent local geoid models in the area. Its RMS fit with GPS/levelling is 27 cm and 3.8 ppm in the absolute and relative senses, respectively. Moreover, the relative accuracy of the IRG04 geoid model is at least 4 times better than any of the previously published global and regional geoid models in the area. Also, the RMS fit of the combined surface model (IRG04C) versus independent precise GPS/levelling is almost 4 times better compared to the original gravimetric geoid model (IRG04). These achievements clearly show the effect of the new gravity database and the SRTM data for the regional geoid determination in Iran based on the least-squares modification of Stokes’ formula. / <p>QC 20100906</p>

Page generated in 0.119 seconds