• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 29
  • 20
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 37
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fate(s) of Injected CO₂ in a Coal-Bearing Formation, Louisiana, Gulf Coast Basin: Chemical and Isotopic Tracers of Microbial-Brine-Rock-CO₂ Interactions

Shelton, Jenna Lynn January 2013 (has links)
Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as a major storage mechanism. Using δ¹³C values of CO₂ and dissolved organic carbon (DIC), CO₂ dissolution was also shown to be a major storage mechanism for 3 of the 4 samples from the Olla 2800' sand. Minor storage mechanisms were shown to be migration, which only affected 2 samples (from 1 well), and some EOR-CO₂ conversion to microbial methane for 3 of the 4 Olla 2800' sand samples. Since methanogenesis was not shown to be a major storage mechanism for the EOR-CO₂ in the Olla Field (CO₂ injection did not stimulate methanogenesis), samples were examined from adjacent oil fields to determine the cause of the Olla microbial "hot-spot". Microbial methane was found in all oil fields sampled, but indicators of methanogenesis (e.g. alkalinity, high δ¹³C-DIC values) were the greatest in the Olla Field, and the environmental conditions (salinity, pH, temperature) were most ideal for microbial CO₂ reduction in the Olla field, compared to adjacent fields.
22

The distribution and PAH-degradative potential of Cycloclasticus spp. in the marine environment /

Geiselbrecht, Allison D. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [106]-120).
23

Geologic Mapping of Ascraeus Mons, Mars

January 2017 (has links)
abstract: Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of ~350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history. A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano. Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars. / Dissertation/Thesis / Masters Thesis Geological Sciences 2017
24

Analise preliminar sobre a disposicao de rejeitos radioativos de alta atividade em formacoes geologicas do Estado de Sao Paulo

MATTOS, LUIS A.T. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:29:24Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:29Z (GMT). No. of bitstreams: 1 01294.pdf: 3608869 bytes, checksum: 7856ebbd45e9a73b47b66357035deff1 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
25

Study of dinoflagellate cysts from recent marine sediments of British Columbia

Dobell, Patricia Elda Rose January 1978 (has links)
Viable cysts collected from natural sediments were induced to excyst. Ten cyst-theca relationships, first established elsewhere, were confirmed for British Columbia (B.C.). These were: Gonyaulax tamarensis, Protoperidinium aspidotum, P. claudicans, P. conicoides, P. conicum, P. cf. denticulatum, P. leonis, P. oblongum, and P. punctulatum. Five cyst-theca relationships were established for the first time: Peridiniopsis cf. hainanensis, Protoperidinium sp. nov., P. thorianum, and two apparently new species of Gonyaulax. P. pentagonum was found to have a cyst different from the cyst of this species in the Atlantic. Forty-five samples from Recent sediments were collected along the coast of B.C. Twenty-three of the samples had very few cysts. Hidden Basin was the chief source of viable cysts for the excystment experiments. Ten cyst-based taxa were described from the sediment samples. These were: Operculodinium centrocarpum, the cyst of Scrippsiella faeroense (= Micrhystridium bifurcatum), Spiniferites belerius, S. bentori, S. bulloideus, S. elongatus, S. membranaceus, S. nodosum, and S. ramosus. Tanyosphaeridium sp. has been recorded previously as the cyst of Polykrikos schwarzi. Two new cyst-based taxa are described for the first time. These are a cyst of Protoperidinium sp., and Spiniferites "sp. A". Cyst assemblages in the Recent sediments of B.C. were similar to many temperate estuarine and neritic areas. Some cysts which are characteristic of these areas in other regions, have not yet been found in B.C. The relative importance of some cysts also varies from that found in similar sediments elsewhere. The dominance of Operculodinium centrocarpum in many of the cyst assemblages, including B.C., is a pattern typical of temperate estuarine conditions. Some cysts appear to be characteristically associated with fjord environments. Scrippsiella faeroense, for example, has been found in Norwegian fjords and Scottish sea lochs as well as some B.C. fjords and inlets. / Science, Faculty of / Botany, Department of / Zoology, Department of / Graduate
26

Geologic Mapping of the Vernal NW Quadrangle, Uintah County, UT, and Stratigraphic Relationships of the Duchesne River Formation and Bishop Conglomerate

Webb, Casey Andrew 01 August 2017 (has links)
Detailed mapping (1:24,000), measured sections, and clast counts in conglomerates of the Duchesne River Formation and Bishop Conglomerate in the Vernal NW quadrangle in northeastern Utah reveal the middle Cenozoic stratigraphic geometry, the uplift and unroofing history of the eastern Uinta Mountains, and give evidence for the pulsed termination of Laramide uplift. The Unita Mountains are an EW-trending reverse fault bounded and basement-cored, Laramide uplift. The oldest unit of the Duchesne River Formation, the Eocene Brennan Basin Member, contains 80-90% Paleozoic clasts and <20% Precambrian clasts. Proximal to the Uinta uplift the conglomerates of this member are dominated by Paleozoic Madison Limestone clasts (70-90% of all clasts). Farther out into the basin, Paleozoic clasts still dominate in Brennan Basin Member conglomerates, but chert clasts are more abundant (up to 43%) showing the efficiency of erosion of the carbonate clasts over a short distance (~5 km). Conglomerates in the progressively younger Dry Gulch Creek, Lapoint, and Starr Flat members show a significant upward increase in Precambrian clasts with 34-73% Uinta Mountain Group and 8-63% Madison Limestone. Duchesne River Formation has a significant increase in coarse-grained deposits from the southern parts of the quadrangle (20-50% coarse) to the northern parts (75% coarse) nearer the Uinta uplift. The lower part of the Duchesne River Formation exhibits a fining upward sequence representing a tectonic lull. Clast count patterns show that pebbly channel deposits in the south maintain similar compositions to their alluvial fan counterparts. To the north, the fine-grained Lapoint and Dry Gulch Creek members of the Duchesne River Formation appear to pinch out completely. This can be explained by erosion of these fine-grained deposits or by lateral facies shifts before deposition of the next unit. Starr Flat Member conglomerates were deposited above Lapoint Member siltstones and represent southward progradation of alluvial fans away from the uplifting mountain front. Similarities in composition and sedimentary structures have caused confusion surrounding the contact between the Starr Flat Member and the overlying Bishop Conglomerate. Within the Vernal NW quadrangle, we interpret this contact as an angular unconformity (the Gilbert Peak Erosion Surface) developed on the uppermost tilted red siltstone of the Starr Flat Member sometime after 37.9 Ma. Stratigraphic and structural relationships reveal important details about the development of a Laramide mountain range: 1) sequential unroofing sequences in the Duchesne River Formation, 2) progradation of alluvial fans to form the Starr Flat Member, 3) and the unconformable nature of the Gilbert Peak Erosion Surface lead to the conclusion that there were at least 3 distinct episodes of uplift during the deposition of these formations. The last uplift episode upwarped the Starr Flat Member constraining the termination of Laramide uplift in the Uinta Mountains to be after deposition of the Starr Flat Member and prior to deposition of the horizontal Bishop Conglomerate starting at about 34 Ma. This, combined with 40Ar/39Ar ages of 39.4 Ma from the Dry Gulch Creek and Lapoint member, show that slab rollback related volcanism was occurring to the west while the Uinta Mountains were being uplifted on Laramide faults. These new 40Ar/39Ar ages constrain the timing of deposition and clarify stratigraphic relationships within the Duchesne River Formation; they suggest a significant unconformity of as much as 4 m.y. between the Duchesne River Formation and the overlying Bishop Conglomerate, which is 34-30 Ma in age, and show that Laramide uplift continued after 40 Ma in this region.
27

The precise timing and character of glaciations in Patagonia from MIS 6 to the Little Ice Age

Peltier, Carly January 2021 (has links)
By only considering records of climate and glaciers over the period that humans have been monitoring them, one might think that climate normally changes quite rapidly, and that glaciers have always been small. But in the not-so-distant past, an ice sheet covered the Southern Andes, flowing across the southern tip of the continent, and in some places, even terminating into the Atlantic Ocean. Glaciers rewrite the surfaces they inhabit, leaving behind indicators of their past behavior. By studying the landforms they create, we can reconstruct climates of the past. Here I present unique and novel glacier-climate reconstructions over southern and central Patagonia using a state-of-the-art dating approach tied to high resolution spatial mapping and glaciological modeling. The main goal of this thesis is to constrain the precise timing and character of the past advances of three glaciers in Patagonia. To this end, I present new precise 10Be surface exposure datasets from two paleo outlet glacier lobes (at 45°S and 53°S), totaling 71 new moraine boulder ages. In these two valleys, I am able to reconstruct the last three major glaciations (MIS 6, 4, 2), as well as provide a constraint for the last two terminations (T1, T2). At a third site, I create a novel dataset to reconstruct the behavior of the Calluqueo glacier (48°S) from ~7,000 years ago to the present. All three sites are eastwards of the main Andes mountain range, spanning from southernmost Patagonia (53°S) to central Patagonia (45°S). To achieve my thesis objectives, I employed recent improvements in the 10Be exposure dating method, and tied the geochronological studies to new, high resolution maps of the glacial geomorphology created by the former glaciers and associated processes. We find in central Patagonia, the Ñirehuao glacier lobe was most extensive potentially during Marine Isotope Stage (MIS) 8, but certainly prior to MIS 6, followed by a major advance during MIS 6. This study presents one of the first directly dated records of a MIS 6 glacier expansion in Patagonia at 153±5.1 ka, where the glacier may have been in retreat at 137±4.2 ka. During the last glacial cycle, the glacier was most extensive during the middle of MIS 2, at 23.6±0.9 ka. The southernmost section of the Ice Sheet, at Estrecho de Magallanes, was more extensive during Marine Isotope Stage 4 (MIS 4) than during MIS 2, representing the first direct dating of the MIS 4 glacier culmination in South America. Similar to the MIS 2 glacial maximum, within MIS 4 there were multiple advances that we date (6 samples) to between 67.5±2.1 and 62.1±2.0 ka. Inboard of the MIS 4 moraine complex, we date a sequence of geomorphically distinct MIS 2 moraines that represent separate major periods of glacial stability. The MIS 2 maximum extent occurred by 27.4±0.8 ka and was followed by at least four more full glacial culminations over a hundred miles beyond the Andes mountains. About 18 km inboard of the main MIS 2 landforms, the sequence is followed by smaller-scale recessional moraine crests that we date to 18.0±0.8 ka, indicating the glacier was in net retreat at this time. In order to estimate the climate conditions necessary to drive the glacier advances that we date and map, we apply the University of Maine Ice Sheet Model to the Estrecho de Magallanes and Ñirehuao records. Tentative results suggest that the Magallanes lobe may have reached mapped inner and outer MIS 2 moraines with a climate that had approximately 4.5°C and 5.5°C cooler summers, respectively, assuming about 25% less annual precipitation relative to modern conditions. A new record at Calluqueo, in central Patagonia, allows us to reconstruct Holocene (interglacial) glacier changes. Using 33 new 10Be ages with unprecedented precision, geomorphic mapping and historical imagery, we find that the Calluqueo glacier sat at its mid-Holocene maximum extent from ~6,900 until ~6,700 years before the present. Major moraine forming advances subsequently culminated at least seven more times, averaging every 500±31 years, between 5,620±203 and 3,120±106 years ago. A hiatus in moraine formation occurred from 3,120±106 until 1,160±50 years ago (860 CE). Major retreat occurred between 1600-1800 CE, followed by stability from 1800-1940 CE, and pronounced ongoing retreat since after 1940 CE. For the Holocene period, this record represents one of the first precise, directly-dated glacier histories from central Patagonia, and one of the few available for all of Patagonia. The timing of advances of the Calluqueo glacier has little in common with the glacial histories from the Northern Hemisphere, suggesting an inter-hemispheric asynchronicity. All together, we reconstruct the timing of glacial maxima at three sites in terrestrial Patagonia from 53°S to 45°S, with unprecedented precision, from pre-MIS 6 to the present day.
28

Surficial Deposits and Geologic History, Northern Bear Lake Valley, Idaho

Robertson, George C., III 01 May 1978 (has links)
Detailed geologic mapping and subsurface study of late Pleistocene and Holocene sediments in northern Bear Lake Valley show at least four episodes of deposition of fluvial, marsh, bay, and lacustrine sediments. from oldest to youngest, these are the Ovid, Liberty, Wardboro, and Lifton episodes. These episodes are substantially different than those proposed by previous investigators. The informal term Bear Lake Formation is formally redefined here as the Bear Lake Group, and includes the newly defined Ovid Formation, Liberty Formation, lanark Formation, and Rainb= Gravel. The overlying Wardboro Loess, also defined here, provides a probably age of 11,000 to 8,000 years B. P. for widespread post-Wisconsinan deposition of loess in northern Utah and southern Idaho. The Ovid Episode began prior to 27,400 years B. P ., d=ing a warm, dry, climatic interval. Sediments deposited during the early part of the Ovid Episode include marsh and bay deposits of the l=er part of the Ovid Formation in northern Bear Lake Valley , probably similar deposits of the lCN~er part of the lanark Formation west of the Bloomington Scarp (on the west side of Bear Lake Valley), and marshy deposits beneath Bear Lake in southern Bear Lake Valley. West-sloping pediments at the north end of Bear Lake Valley, between Bennington and Georgetown, Idaho, and old alluvial fans, also may have formed at this time. The northern outlet of the valley was near 5990 feet at this time . Downfaulting along the Bear L3ke fault zone on the east side of Bear L3ke Valley, and prol:able eastward tilting affected the central valley during the Ovid Episode. At this time, deposition of deep-water carbonates, beneath Bear L3ke, prol:ably began in southern Bear L3ke Valley. Later, cooler- and Jl'Oister clirratic conditions of a Late Pleistocene glacial interval (Pinedale?) resulted in a shall& extension of this lake into northern Bear L3ke Valley during the Liberty Episode. Progradational, shallow-water sand deposits of the Liberty Formation show that Bear Lake attained its most recent maximum areal extent at this time. Simultaneous deposition of the Rainbow Gravel at the entrance of the Bear River into the valley, near Dingle, Idaho, and of the sandy, deltaic upper part of the Lanark Formation along the west side of the valley, reflected the increased addition of sediments, probably due to glaciation and higher stream discharges. The valley outlet was at an altitude near 5945 feet. Downcutting of the valley outlet and waning moist climatic conditions led to exposure of lake beds, increased effectiveness of the wind, and deposition of the Wardboro Loess during the Wardboro Episode. This loess prol:ably is correlative with the Niter Loess in Thatcher Basin (Gem and Gentile valleys, Idaho). It is slightly more than 8,000 C14 years old, and probably less than 11,000 year old. Recurrent faulting along the east margin (Bear Lake fault zone) and west margin (Bloomington Scarp) of the valley at the onset of the Lifton Episode led to a brief re- expansion of Bear Lake, and then a recession southward to its present position near 5923 feet. During this time, a series of beach ridges, successively younger southward, and undifferentiated sediments of marsh, bay, and stream origin, formed in northern Bear Lake Valley. The present valley outlet is near 5873 feet.
29

A Comparison of Remote Sensing Data to Geologic Maps of Tonopah, Nevada: Investigating the Utility of Remote Sensing Techniques for Economic Deposit Exploration

McClellan, Jennifer 10 January 2022 (has links)
No description available.
30

Toward A Field Of Evolution Geography: A Contextual View Of Earth Through Deep Time

Macallister, James D. 01 January 2011 (has links) (PDF)
Evolution geography takes a systems approach to the study of evolution. The interconnected systems include: the gravitational and thermodynamic solar system in which the Earth was formed and resides; the cosmic, solar, electrical, chemical, radioactive and thermal energy flows of Earth; the Earth’s ever-changing biogeochemistry; the dynamic geography of the Earth (deep space); the energy gradients of living matter, which have reciprocally shaped and been shaped by their physical environment for at least 3400 million years (“deep time”); and hominid cultures and civilizations and their ramifications for the Earth's surface over at least the last 60,000 years. We humans are largely unaware of our place or time of evolutionary appearance on Earth. We have had a growing impact on Earth over the last seven centuries. Our over-reliance on reductionism affects the search for knowledge, proliferates and distorts worldviews extrapolated from within narrow disciplines, stifles debate and suppresses novel hypotheses. Data must be mapped into history and context where it can be challenged by other fields, be seen in the context of the evolution of the dynamical Earth system (Gaia). Can humanity trust any worldview to be the basis of good judgment absent the context of Gaia? The evidence is obvious and overwhelming that the answer is “no”.

Page generated in 0.0343 seconds