Spelling suggestions: "subject:"gepulsten magnetfeldern"" "subject:"gepulsten magnetfeld""
1 |
Nuclear Magnetic Resonance - Advanced Concepts and Applications to Quantum MaterialsKohlrautz, Jonas 11 July 2017 (has links)
Diese Arbeit behandelt verschiedene Themen im Bereich der kernmagnetischen Resonanz (NMR) an Festkörpern. Der umfangreichste Themenkomplex sind hierbei Untersuchungen in gepulsten Magnetfeldern. Diese ermöglichen Experimente bei Feldstärken, die sich auf keine andere Weise nicht-destruktiv erreichen lassen, bedeuten aber Schwierigkeiten für NMR Experimente aufgrund ihrer inherenten Zeitabhängigkeit.
Es wird eine angepasste Datenanalyse vorgestellt, die Korrekturen für Intensitätsverfälschungen enthält und die Zeitabhängigkeit des Magnetfeldes bei der Berechnung einer Fouriertransformation mit zeitabhängigen Basisfunktionen berücksichtigt. Hiermit werden Testmessungen an elementaren Metallen durchgeführt um die Knight-Verschiebung Ks und die Kern-Gitter-Relaxationszeit T1 zu messen. Anschließende Messungen an SrCu2(BO3)2 zeigen desweiteren eindrucksvoll die Detektion einer feld- und temperaturabhängigen Überstruktur der Elektronenspins.
In einem weiteren Themenbereich werden Ergebnisse von Untersuchungen an dem Hochtemperatursupraleitersystem HgBa2 CuO4+δ präsentiert. Bei der Auswertung von temperatur- und orientierungsabhängigen NMR-Verschiebungsmessungen wird ein Widerspruch zu dem im Allgemeinen angenommenen Model mit einer einzigen Spin-Flüssigkeit gefunden. Stattdessen wird eine Analyse mit drei verschiedenen additiven Komponenten entwickelt. Bei der Anwendung dieser Zerlegung wird eine universelle Pseudolückenkomponente gefunden, eine Fermiflüssigkeitskomponente, die nur bei höheren Dotierungsstufen existiert, und eine dritte, die ihr Vorzeichen in Abhängigkeit von der Dotierung ändert.
In einem letzten kürzeren Thema werden vorläufige Ergebnisse von Untersuchungen zu der Dynamik von großen, dipolar gekoppelten, Kernspinsystemen behandelt. Hierbei soll eine Vorhersage über die Existenz zusätzlichen, nicht magnetisierungserhaltenden Resonanzen überprüft werden.
|
2 |
Cyclotron resonance and photoluminescence studies of dilute GaAsN in magnetic fields up to 62 TeslaEßer, Faina 15 February 2017 (has links) (PDF)
In this thesis, we investigate optical and electrical properties of dilute nitride semiconductors GaAsN in pulsed magnetic fields up to 62 T. For the most part, the experiments are performed at the Dresden High Magnetic Field Laboratory (HLD).
In the first part of this thesis, the electron effective mass of GaAsN is determined with a direct method for the first time. Cyclotron resonance (CR) absorption spectroscopy is performed in Si-doped GaAsN epilayers with a nitrogen content up to 0.2%. For the CR absorption study, we use the combination of the free-electron laser FELBE and pulsed magnetic fields at the HLD, both located at the Helmholtz-Zentrum Dresden-Rossendorf. A slight increase of the CR electron effective mass with N content is obtained. This result is in excellent agreement with calculations based on the band anticrossing model and the empirical tight-binding method. We also find an increase of the band nonparabolicity with increasing N concentration in agreement with our calculations of the energy dependent momentum effective mass.
In the second part of this thesis, the photoluminescence (PL) characteristics of intrinsic GaAsN and n-doped GaAsN:Si is studied. The PL of intrinsic and very dilute GaAsN is characterized by both GaAs-related transitions and N-induced features. These distinct peaks merge into a broad spectral band of localized excitons (LEs) when the N content is increased. This so-called LE-band exhibits a partially delocalized character because of overlapping exciton wave functions and an efficient interexcitonic population transfer. Merged spectra dominate the PL of all Si-doped GaAsN samples. They have contributions of free and localized excitons and are consequently blue-shifted with respect to LE-bands of intrinsic GaAsN. The highly merged PL profiles of GaAsN:Si are studied systematically for the first time with temperature-dependent time-resolved PL. The PL decay is predominantly monoexponential and has a strong energy dispersion. In comparison to formerly reported values of intrinsic GaAsN epilayers, the determined decay times of GaAsN:Si are reduced by a factor of 10 because of enhanced Shockley-Read-Hall and possibly Auger recombinations.
In the third part of this thesis, intrinsic and Si-doped GaAsN are investigated with magneto-PL in fields up to 62 T. A magneto-PL setup for pulsed magnetic fields of the HLD was built for this purpose. The blue-shift of LE-bands is studied in high magnetic fields in order to investigate its delocalized character. The blue-shift is diminished in intrinsic GaAsN at higher temperatures, which indicates that the interexcitonic population transfer is only active below a critical temperature 20 K < T < 50 K. A similar increase of the temperature has no significant impact on the partially delocalized character of the merged spectral band of GaAsN:Si. We conclude that the interexcitonic transfer of Si-doped GaAsN is more complex than in undoped GaAsN. In order to determine reduced masses of undoped GaAsN and GaAs:Si, the field-induced shift of the free exciton transition is studied in the high-field limit. We find an excellent agreement of GaAs:Si with a formerly published value of intrinsic GaAs which was determined with the same method. In both cases, the reduced mass values are enhanced by 20% in comparison to the accepted reduced mass values of GaAs. The determined GaAsN masses are 1.5 times larger than in GaAs:Si and match the rising trend of formerly reported electron effective masses of GaAsN.
|
3 |
Direct Measurements of the Magnetocaloric Effect in Pulsed Magnetic FieldsGhorbani-Zavareh, Mahdiyeh 24 July 2017 (has links) (PDF)
The present thesis is devoted to the investigation of the magnetocaloric effect (MCE) by direct measurements in pulsed and quasi-static magnetic fields as well as by analyzing specific-heat data taken in static magnetic fields. The emphasis is on the direct measurement of the adiabatic temperature change Tad in pulsed magnetic fields, because the pulsed-field data allow for an analysis of the sample-temperature response to the magnetic field on a time scale of 10 to 100 ms, which is on the order of typical operation frequencies (10 - 100 Hz) of magnetocaloric cooling devices. Besides extending the accessible magneticfield range to beyond 70 T, the short pulse duration provides nearly adiabatic conditions during the measurement.
In this work, the magnetocaloric properties of various types of solids are investigated: Gadolinium (Gd) with a second-order transition, Ni50Mn35In15 with multiple magnetic transitions, and La(Fe,Si,Co)13 compounds with first and second-order transitions, depending on the Co concentration.
The adiabatic temperature change of a polycrystalline Gd sample has been measured in pulsed magnetic fields up to 70 T and also in quasi-static fields up to 2 T. A very large adiabatic temperature change of Tad 60 K is observed near the Curie temperature (TC = 294 K) for a field change of 70 T. In addition, we find that this maximum temperature change grows with H2=3.
We have studied the MCE in the shape-memory Heusler alloy Ni50Mn35In15 by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results obtained for 6 T pulses are compared with data extracted from specific-heat experiments. We find a saturation of the inverse MCE, related to the firstorder martensitic transition, with a maximum adiabatic temperature change of Tad = 7 K at 250 K and a conventional field-dependent MCE near the second-order ferromagnetic transition in the austenitic phase. Our results disclose that in shape-memory alloys the different contributions to the MCE and hysteresis effects around the martensitic transition have to be carefully considered for future cooling applications.
Finally, a comparative study of the magnetic and magnetocaloric properties of La(Fe,Si,Co)13 alloys is presented by discussing magnetization, Tad, specificheat, and magnetostriction measurements. The nature of the transition can be changed from first to second order as well as the temperature of the transition can be tuned by varying the Co concentration. The MCE of two samples with nominal compositions of LaFe11:74Co0:13Si1:13 and LaFe11:21Co0:65Si1:11 have been measured in pulsed magnetic fields up to 50 T. We find that LaFe11:74Co0:13Si1:13 with a first-order transition (TC = 198 K) shows half of the net MCE already at low fields (2-10 T). Whereas the MCE of LaFe11:21Co0:65Si1:11 with secondorder transition (TC = 257 K) grows gradually.
The MCE in both compounds reaches almost similar values at a field of 50 T. The MCE results obtained in pulsed magnetic fields of 2 T are in good agreement with data from quasistatic field measurements. The pulsed-field magnetization of both compounds has been measured in fields up to 60 T under nearly adiabatic conditions and compared to steady-field isothermal measurements. The differences between the magnetization curves obtained under isothermal and adiabatic conditions give the MCE via the crossing points of the adiabatic curve with the set of isothermal curves. For LaFe11:74Co0:13Si1:13, a S - T diagram has been constructed from specific-heat measurements in static fields, which is used to extract the MCE indirectly. Magnetostriction measurements are carried out for two compounds in both static and pulsed magnetic fields. For LaFe11:74Co0:13Si1:13, the strain shows a sharp increase.
However, due to cracks appearing in the sample an irreversible magneto-volume effect of about 1% is observed in pulsed magnetic fields. Whereas for LaFe11:21Co0:65Si1:11 the data show a smooth increase of the sample length up to 60 T, and a 1.3% volume increase is obtained. We also find that magnetizing the latter sample in the paramagnetic state is tightly bound to the volume increase and this, likewise for the former sample, gives the main contribution to the entropy change.
|
4 |
Cyclotron resonance and photoluminescence studies of dilute GaAsN in magnetic fields up to 62 TeslaEßer, Faina 15 February 2017 (has links)
In this thesis, we investigate optical and electrical properties of dilute nitride semiconductors GaAsN in pulsed magnetic fields up to 62 T. For the most part, the experiments are performed at the Dresden High Magnetic Field Laboratory (HLD).
In the first part of this thesis, the electron effective mass of GaAsN is determined with a direct method for the first time. Cyclotron resonance (CR) absorption spectroscopy is performed in Si-doped GaAsN epilayers with a nitrogen content up to 0.2%. For the CR absorption study, we use the combination of the free-electron laser FELBE and pulsed magnetic fields at the HLD, both located at the Helmholtz-Zentrum Dresden-Rossendorf. A slight increase of the CR electron effective mass with N content is obtained. This result is in excellent agreement with calculations based on the band anticrossing model and the empirical tight-binding method. We also find an increase of the band nonparabolicity with increasing N concentration in agreement with our calculations of the energy dependent momentum effective mass.
In the second part of this thesis, the photoluminescence (PL) characteristics of intrinsic GaAsN and n-doped GaAsN:Si is studied. The PL of intrinsic and very dilute GaAsN is characterized by both GaAs-related transitions and N-induced features. These distinct peaks merge into a broad spectral band of localized excitons (LEs) when the N content is increased. This so-called LE-band exhibits a partially delocalized character because of overlapping exciton wave functions and an efficient interexcitonic population transfer. Merged spectra dominate the PL of all Si-doped GaAsN samples. They have contributions of free and localized excitons and are consequently blue-shifted with respect to LE-bands of intrinsic GaAsN. The highly merged PL profiles of GaAsN:Si are studied systematically for the first time with temperature-dependent time-resolved PL. The PL decay is predominantly monoexponential and has a strong energy dispersion. In comparison to formerly reported values of intrinsic GaAsN epilayers, the determined decay times of GaAsN:Si are reduced by a factor of 10 because of enhanced Shockley-Read-Hall and possibly Auger recombinations.
In the third part of this thesis, intrinsic and Si-doped GaAsN are investigated with magneto-PL in fields up to 62 T. A magneto-PL setup for pulsed magnetic fields of the HLD was built for this purpose. The blue-shift of LE-bands is studied in high magnetic fields in order to investigate its delocalized character. The blue-shift is diminished in intrinsic GaAsN at higher temperatures, which indicates that the interexcitonic population transfer is only active below a critical temperature 20 K < T < 50 K. A similar increase of the temperature has no significant impact on the partially delocalized character of the merged spectral band of GaAsN:Si. We conclude that the interexcitonic transfer of Si-doped GaAsN is more complex than in undoped GaAsN. In order to determine reduced masses of undoped GaAsN and GaAs:Si, the field-induced shift of the free exciton transition is studied in the high-field limit. We find an excellent agreement of GaAs:Si with a formerly published value of intrinsic GaAs which was determined with the same method. In both cases, the reduced mass values are enhanced by 20% in comparison to the accepted reduced mass values of GaAs. The determined GaAsN masses are 1.5 times larger than in GaAs:Si and match the rising trend of formerly reported electron effective masses of GaAsN.
|
5 |
Nuclear Magnetic Resonance in pulsed high magnetic fieldsMeier, Benno 13 December 2012 (has links) (PDF)
Höchste Magnetfelder haben sich zu einem unverzichtbaren Werkzeug der Festkörperphysik entwickelt. Sie werden insbesondere verwendet, um die elektronischen Eigenschaften von modernen Materialien zu erforschen. Da Magnetfelder oberhalb von 45 Tesla nicht mehr mit statischen (z.B. supraleitenden) Feldern zu erreichen sind, haben sich weltweit verschiedene Labore auf die Erzeugung gepulster Magnetfelder mit angestrebten Maximalwerten von 100 Tesla spezialisiert.
In der vorliegenden Arbeit werden Anwendungsmöglichkeiten der kernmagnetischen Resonanz (NMR) in gepulsten Magnetfeldern aufgezeigt. Es ist gelungen, die starke Zeitabhängigkeit der gepulsten Magnetfelder mittels NMR präzise zu vermessen. Die genaue Kenntnis des Magnetfelds nach dem Puls ermöglicht, die Zeitabhängigkeit aus den Daten zu entfernen, sodass auch eine kohärente Signal-Mittelung möglich ist. Davon ausgehend werden erstmalig Messungen der chemischen Verschiebung, der Knight Shift, der Spin-Gitter-Relaxationsrate 1/T1 und der Spin-Spin-Relaxationsrate 1/T2 diskutiert.
Schließlich werden die im Zusammenhang mit gepulsten Magnetfeldern erarbeiteten Gleichungen in vereinfachter Form zur genauen Messung und Analyse des freien Induktions-Zerfalls von 19F Kernspins in Calciumfluorid verwendet. Durch Messung des Zerfalls über sechs Größenordnungen wird eine genaue Analyse bezüglich einer neuartigen Theorie ermöglicht, welche den Zerfall basierend auf der Annahme mikroskopischen Chaos\' erklärt. Diese Theorie hat das Potenzial, zu einem tieferen Verständnis von Quantenchaos in makroskopischen Vielteilchensystemen zu führen.
|
6 |
Direct Measurements of the Magnetocaloric Effect in Pulsed Magnetic FieldsGhorbani-Zavareh, Mahdiyeh 23 May 2016 (has links)
The present thesis is devoted to the investigation of the magnetocaloric effect (MCE) by direct measurements in pulsed and quasi-static magnetic fields as well as by analyzing specific-heat data taken in static magnetic fields. The emphasis is on the direct measurement of the adiabatic temperature change Tad in pulsed magnetic fields, because the pulsed-field data allow for an analysis of the sample-temperature response to the magnetic field on a time scale of 10 to 100 ms, which is on the order of typical operation frequencies (10 - 100 Hz) of magnetocaloric cooling devices. Besides extending the accessible magneticfield range to beyond 70 T, the short pulse duration provides nearly adiabatic conditions during the measurement.
In this work, the magnetocaloric properties of various types of solids are investigated: Gadolinium (Gd) with a second-order transition, Ni50Mn35In15 with multiple magnetic transitions, and La(Fe,Si,Co)13 compounds with first and second-order transitions, depending on the Co concentration.
The adiabatic temperature change of a polycrystalline Gd sample has been measured in pulsed magnetic fields up to 70 T and also in quasi-static fields up to 2 T. A very large adiabatic temperature change of Tad 60 K is observed near the Curie temperature (TC = 294 K) for a field change of 70 T. In addition, we find that this maximum temperature change grows with H2=3.
We have studied the MCE in the shape-memory Heusler alloy Ni50Mn35In15 by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results obtained for 6 T pulses are compared with data extracted from specific-heat experiments. We find a saturation of the inverse MCE, related to the firstorder martensitic transition, with a maximum adiabatic temperature change of Tad = 7 K at 250 K and a conventional field-dependent MCE near the second-order ferromagnetic transition in the austenitic phase. Our results disclose that in shape-memory alloys the different contributions to the MCE and hysteresis effects around the martensitic transition have to be carefully considered for future cooling applications.
Finally, a comparative study of the magnetic and magnetocaloric properties of La(Fe,Si,Co)13 alloys is presented by discussing magnetization, Tad, specificheat, and magnetostriction measurements. The nature of the transition can be changed from first to second order as well as the temperature of the transition can be tuned by varying the Co concentration. The MCE of two samples with nominal compositions of LaFe11:74Co0:13Si1:13 and LaFe11:21Co0:65Si1:11 have been measured in pulsed magnetic fields up to 50 T. We find that LaFe11:74Co0:13Si1:13 with a first-order transition (TC = 198 K) shows half of the net MCE already at low fields (2-10 T). Whereas the MCE of LaFe11:21Co0:65Si1:11 with secondorder transition (TC = 257 K) grows gradually.
The MCE in both compounds reaches almost similar values at a field of 50 T. The MCE results obtained in pulsed magnetic fields of 2 T are in good agreement with data from quasistatic field measurements. The pulsed-field magnetization of both compounds has been measured in fields up to 60 T under nearly adiabatic conditions and compared to steady-field isothermal measurements. The differences between the magnetization curves obtained under isothermal and adiabatic conditions give the MCE via the crossing points of the adiabatic curve with the set of isothermal curves. For LaFe11:74Co0:13Si1:13, a S - T diagram has been constructed from specific-heat measurements in static fields, which is used to extract the MCE indirectly. Magnetostriction measurements are carried out for two compounds in both static and pulsed magnetic fields. For LaFe11:74Co0:13Si1:13, the strain shows a sharp increase.
However, due to cracks appearing in the sample an irreversible magneto-volume effect of about 1% is observed in pulsed magnetic fields. Whereas for LaFe11:21Co0:65Si1:11 the data show a smooth increase of the sample length up to 60 T, and a 1.3% volume increase is obtained. We also find that magnetizing the latter sample in the paramagnetic state is tightly bound to the volume increase and this, likewise for the former sample, gives the main contribution to the entropy change.
|
7 |
Nuclear Magnetic Resonance in pulsed high magnetic fieldsMeier, Benno 05 November 2012 (has links)
Höchste Magnetfelder haben sich zu einem unverzichtbaren Werkzeug der Festkörperphysik entwickelt. Sie werden insbesondere verwendet, um die elektronischen Eigenschaften von modernen Materialien zu erforschen. Da Magnetfelder oberhalb von 45 Tesla nicht mehr mit statischen (z.B. supraleitenden) Feldern zu erreichen sind, haben sich weltweit verschiedene Labore auf die Erzeugung gepulster Magnetfelder mit angestrebten Maximalwerten von 100 Tesla spezialisiert.
In der vorliegenden Arbeit werden Anwendungsmöglichkeiten der kernmagnetischen Resonanz (NMR) in gepulsten Magnetfeldern aufgezeigt. Es ist gelungen, die starke Zeitabhängigkeit der gepulsten Magnetfelder mittels NMR präzise zu vermessen. Die genaue Kenntnis des Magnetfelds nach dem Puls ermöglicht, die Zeitabhängigkeit aus den Daten zu entfernen, sodass auch eine kohärente Signal-Mittelung möglich ist. Davon ausgehend werden erstmalig Messungen der chemischen Verschiebung, der Knight Shift, der Spin-Gitter-Relaxationsrate 1/T1 und der Spin-Spin-Relaxationsrate 1/T2 diskutiert.
Schließlich werden die im Zusammenhang mit gepulsten Magnetfeldern erarbeiteten Gleichungen in vereinfachter Form zur genauen Messung und Analyse des freien Induktions-Zerfalls von 19F Kernspins in Calciumfluorid verwendet. Durch Messung des Zerfalls über sechs Größenordnungen wird eine genaue Analyse bezüglich einer neuartigen Theorie ermöglicht, welche den Zerfall basierend auf der Annahme mikroskopischen Chaos\'' erklärt. Diese Theorie hat das Potenzial, zu einem tieferen Verständnis von Quantenchaos in makroskopischen Vielteilchensystemen zu führen.
|
Page generated in 0.063 seconds