Spelling suggestions: "subject:"gewichtsanalyse"" "subject:"rechtsanalyse""
1 |
Stenosis of the Nasal Entrance of Brachycephalic Dogs – Objective Measurement Using 3D MorphometryWeng, Tzu-Yi 16 November 2023 (has links)
Introduction: Stenotic nares are one of the most important characteristics of brachycephalic obstructive airway syndrome (BOAS), which was first described in 1949. However, although they have been mentioned in most texts about brachycephalic malformations, few studies have attempted to characterize the nasal entrance of dogs morphologically or functionally, and none of them have described it objectively with landmarks.
Recently, as the popularity of brachycephalic dogs has exploded worldwide, innumumberable dogs are suffering from BOAS due to structural malformations. In the point of view of animal welfare, stenotic nares should be objectively evaluated to provide evidence of torture breeding.
Objectives: The aim of this study was to objectively measure and thus characterize the nasal entrance stenosis of brachycephalic dogs in comparison to non-brachycephalic dogs. To this end, the following objectives were defined: 1. Our aim is to use three-dimensional (3D) soft-tissue morphometry to objectively measure the externally visible part of the nasal entrance of healthy and brachycephalic dogs. 2. Our aim is to define specific soft-tissue landmarks and parameters to objectively characterize the nasal entrance of dogs. 3. Compare 3D high-resolution scanning with computed tomography (CT) using the newly defined parameters. 4. Reexamine the nasal entrance with 3D scan six months after surgical correction of nasal entrance stenosis (Ala-vestibuloplasty).
Animals, Material and Methods: Forty-five brachycephalic and 45 non-brachycephalic dogs were included in this study between 2018 and 2020. All the animals were referred to the Ear, Nose, and Throat Unit of the Small Animal Department at the University of Leipzig, either for surgical correction of BOAS or for endoscopic examination. Animals were excluded if their nasal entrance was potentially affected due to disease or previous surgery.
All dogs were scanned with a 3D scanner under general anesthesia using a standardized anesthetic protocol before endoscopic intervention. The 3D scans and CT images were later imported into two advanced software (Amira, Thermo Fisher and Facial Analysis Tool) for objective measurement of the nasal entrance. Intra-observer error and ala-vestibuloplasty (AVP) efficacy of the CT images and 3D scans were tested and compared. All the data were normalized using Shapiro–Wilk normality test. All statistical analyses were later performed using Pearson or Spearman test for correlation, paired t-test, or t-test. Paired t-test was used to test whether the mean difference between pairs of measurements was zero. If it was not the same group of animals, t-test was used instead.
Results: We defined new specific soft-tissue landmarks to calculate the nasal opening area (NOA) and stenotic angle (SA) to objectively describe the canine nasal entrance. The NOA and SA were significantly smaller in brachycephalic dogs than in non-brachycephalic dogs, and the NOA was significantly correlated with body weight, whereas SA was not. After nasal entrance correction via AVP, the nasal entrances were 295%left and 233%right larger than before surgery in brachycephalic dogs. Intra-observer reliability was tested with excellent significance through NOA measurements. Comparison between the 3D scanner and CT was measured with the NOA, and it did not show a significant difference between the methods.
Conclusion: Obtaining the NOA and SA using 3D surface scans seems to be a reliable and reproducible tool for precise objective evaluation of the visible canine nasal entrance. With the measurement of derived NOA and SA, all the brachycephalic dogs in the study were found to have stenotic nares, and all they required AVP to relieve breathing difficulty. The brachycephalic nasal entrances were increased significantly after AVP, the modified nare correction surgery.
We consider the results of our study strong evidence that the breeding of brachycephalic dogs is torture breeding. The restriction of nasal breathing due to the extreme reduction of the nasal entrance to a fraction of the size of that of non-brachycephalic dogs is obvious evidence of this.:1 INTRODUCTION - 1 -
1.1 General Introduction - 1 -
1.2 Objectives - 2 -
2 OVERVIEW OF THE LITERATURE - 3 -
2.1 Brachycephalic Obstructive Airway Syndrome (BOAS) - 3 -
2.1.1 General Introduction of BOAS - 3 -
2.1.2 How to Define Brachycephalic Dogs - 3 -
2.1.3 Commonly Affected Breeds - 4 -
2.2 The Canine Nasal Entrance - 4 -
2.2.1 Anatomy of the Canine Nasal Entrance and Stenosis - 4 -
2.2.2 Pathophysiology of Stenotic Nares in Brachycephalic Dogs - 5 -
2.3 Diagnosis of Stenotic Nares - 9 -
2.3.1 Visual Assessment - 9 -
2.3.2 Nostril Ratio - 11 -
2.3.3 Air Volume of the Nasal Entrance - 11 -
2.4 Development of Morphometry in Brachycephalic Dogs - 11 -
2.5 3D Scanners for 3D Model Reconstruction - 12 -
2.6 Landmarks - 14 -
2.6.1 Introduction of Landmarks - 14 -
2.6.2 Development of Landmarks in Human Medicine - 15 -
2.6.3 Development of Landmarks in Veterinary Medicine - 16 -
2.6.4 Cephalometric Analysis Software - 17 -
3 ANIMALS AND METHODS - 19 -
3.1 Animals - 19 -
3.2 Methods - 19 -
3.2.1 3D Scanning Process and Set-ups of Canine Nasal Entrance - 19 -
3.2.2 Cephalomorphometric Software - 20 -
3.2.3 Cephalometric Landmarks - 20 -
3.2.4 Advanced Morphometric Parameters for Nares - 22 -
3.2.5 Efficacy of Ala-Vestibuloplasty (AVP) - 24 -
3.2.6 Comparison between CT and the 3D Scanning Tool - 24 -
3.2.7 Intra-observer Reliability - 25 -
3.2.8 Statistics - 25 -
4 RESULTS - 26 -
4.1 Brachycephalic Dogs and Non-brachycephalic Dogs - 26 -
4.2 The Nasal Opening Area (NOA) - 28 -
4.3 Efficacy of Ala-Vestibulopasty - 30 -
4.4 Stenotic Angle (SA) - 31 -
4.5 Comparison between CT and the 3D Scanning Tool - 32 -
4.6 Intra-observer Reliability - 34 -
5 DISCUSSION - 36 -
5.1 The Nasal Entrance - 36 -
5.2 Method: the 3D Scanner - 37 -
5.3 Method: Comparison between CT and the 3D Scanner - 38 -
5.4 Method: Landmarks and Reproducibility, Intra-observer Reliability - 39 -
5.5 Nasal Opening Area (NOA) and Efficacy of Ala-Vestibuloplasty (AVP) - 42 -
5.6 Stenotic Angle (SA) - 44 -
5.7 Animal Welfare - 45 -
6 SUMMARY - 47 -
7 ZUSAMMENFASSUNG - 49 -
8 REFERENCES - 51 - / Einleitung: Die Naseneingangstenose ist eine der wichtigsten Merkmale des brachyzephalen Syndroms (BOAS), das erstmals 1949 beschrieben wurde. Obwohl diese komplexe Stenose in den meisten Texten über brachyzephale Fehlbildungen erwähnt wird, haben nur wenige Studien versucht, den Naseneingang von Hunden morphologisch oder funktionell zu charakterisieren. Eine objektive Beschreibung mit Landmarken ist bisher nicht bekannt. In den letzten Jahren ist die Popularität brachyzephaler Hunde weltweit explodiert. Unzählige Hunde leiden aufgrund struktureller Fehlbildungen an BOAS. Unter dem Gesichtspunkt des Tierschutzes sollte die einzige, mit bloßem Auge sichtbare Stenose der oberen Atemwege brachyzephaler Hunde, die Stenose des Naseneingangs objektiv bewertet werden können, um Hinweise auf eine Qualzucht zu belegen.
Zielsetzung: Ziel dieser Studie war es, den Naseneingang von brachyzephalen Hunden im Vergleich zu nicht-brachyzephalen Hunden objektiv zu messen und damit die Stenose des Naseneingangs zu charakterisieren und eine chirurgische Therapie, die Ala-Vestibuloplastie (AVP), zu evaluieren. Zu diesem Zweck wurden die folgenden Ziele definiert: 1. Anwendung der dreidimensionalen (3D) Weichteilmorphometrie zur objektiven Messung des äußerlich sichtbaren Teils des Naseneingangs von gesunden und brachyzephalen Hunden. 2. Definition spezifischer Weichteil-Landmarken und Parameter zur objektiven Charakterisierung des Naseneingangs von Hunden. 3. Methoden-Vergleich zwischen den hochauflösenden 3D-Scans und der Computertomographie (CT) unter Verwendung der neu definierten Parameter. 4. Kontrolluntersuchung mit 3D-Scan sechs Monate nach der chirurgischen Korrektur der Naseneingangsstenose (Ala-Vestibuloplastik).
Tiere und Methoden: 45 brachyzephale und 45 nicht-brachyzephale Hunde wurden zwischen 2018 und 2020 in diese Studie aufgenommen und wurden an die Hals-Nasen-Ohren-Abteilung der Kleintierklinik der Universität Leipzig überwiesen, zur endoskopischen Untersuchung der oberen Atemwege und gegebenenfalls zur chirurgischen Korrektur der BOAS-assozierten Stenosen. Ausgeschlossen wurden Tiere, deren Naseneingang aufgrund von Krankheiten oder einer früheren Operation verändert war. Alle Hunde wurden nach einem standardisierten Anästhesieprotokoll anästhesiert, ein Computertomogramm des Kopfes erstellt und vor dem endoskopischen Eingriff wurde der Kopf mit einem 3D-Scanner gescannt. Die 3D-Scans und CT-Bilder wurden in zwei Softwareprogramme (Amira, Thermo Fisher und Facial Analysis Tool) zur objektiven Messung des Naseneingangs importiert. Zur genauen Charakterisierung wurden neue Landmarken am Naseneingang definiert und zur Berechnung von zwei neuen, abgeleiteten Parametern, der Nasenöffnungsfläche (NOA) und dem stenotischen Winkel (SA) verwendet. Der Intraobserver-Fehler und die Wirksamkeit der Ala-Vestibuloplastie wurden anhand der CT-Bilder und 3D-Scans mit demselben Verfahren geprüft und verglichen. Alle statistischen Analysen wurden später mit dem Pearson-Test oder dem Spearman-Test für die Korrelation, dem gepaarten t-Test oder dem t-Test durchgeführt. Der gepaarte t-Test wurde verwendet, um zu prüfen, ob der Mittelwertunterschied zwischen Paaren von Messungen gleich Null war. Handelte es sich nicht um dieselbe Gruppe von Tieren, wurde stattdessen der t-Test verwendet.
Ergebnisse: Mit den neu definierten spezifischen Weichteil-Landmarken und den abgeleiteten Parametern NOA und SA konnte der Naseneingang aller brachyzephalen und nicht-brachyzephalen Hunde objektiv beschrieben werden. NOA und SA waren bei brachyzephalen Hunden signifikant kleiner als bei nicht-brachyzephalen Hunden. NOA korrelierte in beiden Gruppen signifikant mit dem Körpergewicht. Dagegen zeigte SA keine Korrelation mit dem Körpergewicht. Nach der chirurgischen AVP waren die Naseneingänge bei allen brachyzephalen Hunden größer als vor der Operation, mit einer Zunahme der NOA links um 295 % und rechts um 233 %. Die Intraobserver-Zuverlässigkeit wurde durch NOA-Messungen getestet und war hoch signifikant. Zum Methoden-Vergleich zwischen 3D-Scanner und CT wurde die Nasenöffnungsfläche jeweils am gemessen und zeigte keinen signifikanten Unterschied zwischen den Methoden.
Schlussfolgerungen: Morphometrische Messungen mit 3D-Oberflächenscans scheinen ein zuverlässiges und reproduzierbares Instrument zur präzisen, objektiven Bewertung des Naseneingangs des Hundes zu sein. Bei der Messung der abgeleiteten Flächen (NOA) und Winkel (SA) wurde bei allen brachyzephalen Hunden dieser Studie eine Naseneingangsstenose festgestellt. Nach der chirurgischen Korrektur der brachyzephalen Naseneingangsstenose, der AVP, waren die Nasenöffnungen deutlich vergrößert. Die Einschränkung der Nasenatmung durch die extreme Verkleinerung des Naseneingangs auf einen Bruchteil der Größe von nicht-brachyzephalen Hunden, betrachten wir als eindeutigen Beweis dafür, dass die Zucht von brachyzephalen Hunden eine Qualzucht ist.:1 INTRODUCTION - 1 -
1.1 General Introduction - 1 -
1.2 Objectives - 2 -
2 OVERVIEW OF THE LITERATURE - 3 -
2.1 Brachycephalic Obstructive Airway Syndrome (BOAS) - 3 -
2.1.1 General Introduction of BOAS - 3 -
2.1.2 How to Define Brachycephalic Dogs - 3 -
2.1.3 Commonly Affected Breeds - 4 -
2.2 The Canine Nasal Entrance - 4 -
2.2.1 Anatomy of the Canine Nasal Entrance and Stenosis - 4 -
2.2.2 Pathophysiology of Stenotic Nares in Brachycephalic Dogs - 5 -
2.3 Diagnosis of Stenotic Nares - 9 -
2.3.1 Visual Assessment - 9 -
2.3.2 Nostril Ratio - 11 -
2.3.3 Air Volume of the Nasal Entrance - 11 -
2.4 Development of Morphometry in Brachycephalic Dogs - 11 -
2.5 3D Scanners for 3D Model Reconstruction - 12 -
2.6 Landmarks - 14 -
2.6.1 Introduction of Landmarks - 14 -
2.6.2 Development of Landmarks in Human Medicine - 15 -
2.6.3 Development of Landmarks in Veterinary Medicine - 16 -
2.6.4 Cephalometric Analysis Software - 17 -
3 ANIMALS AND METHODS - 19 -
3.1 Animals - 19 -
3.2 Methods - 19 -
3.2.1 3D Scanning Process and Set-ups of Canine Nasal Entrance - 19 -
3.2.2 Cephalomorphometric Software - 20 -
3.2.3 Cephalometric Landmarks - 20 -
3.2.4 Advanced Morphometric Parameters for Nares - 22 -
3.2.5 Efficacy of Ala-Vestibuloplasty (AVP) - 24 -
3.2.6 Comparison between CT and the 3D Scanning Tool - 24 -
3.2.7 Intra-observer Reliability - 25 -
3.2.8 Statistics - 25 -
4 RESULTS - 26 -
4.1 Brachycephalic Dogs and Non-brachycephalic Dogs - 26 -
4.2 The Nasal Opening Area (NOA) - 28 -
4.3 Efficacy of Ala-Vestibulopasty - 30 -
4.4 Stenotic Angle (SA) - 31 -
4.5 Comparison between CT and the 3D Scanning Tool - 32 -
4.6 Intra-observer Reliability - 34 -
5 DISCUSSION - 36 -
5.1 The Nasal Entrance - 36 -
5.2 Method: the 3D Scanner - 37 -
5.3 Method: Comparison between CT and the 3D Scanner - 38 -
5.4 Method: Landmarks and Reproducibility, Intra-observer Reliability - 39 -
5.5 Nasal Opening Area (NOA) and Efficacy of Ala-Vestibuloplasty (AVP) - 42 -
5.6 Stenotic Angle (SA) - 44 -
5.7 Animal Welfare - 45 -
6 SUMMARY - 47 -
7 ZUSAMMENFASSUNG - 49 -
8 REFERENCES - 51 -
|
Page generated in 0.0696 seconds