• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of ageing on durability and micro-fracture mechanism of fibre reinforced cement composites

Zhu, Wenzhong January 1995 (has links)
No description available.
2

An investigation into the damage tolerance of pre-stressed composite plates

Robb, Malcolm D. January 2000 (has links)
No description available.
3

The effect of glass fiber polysulphone composite reinforcement on flexural strength of two denture-base polymers

Henning, Martha Carolina 30 September 2005 (has links)
Statement of the Problem: Despite its popularity as a denture-base material, poly-methyl methacrylate exhibits inherently low resistance to impact and fatigue failure. This is reflected in the analyses of the prevalence of denture fracture which suggests that prosthesis failure remains an unsolved problem. Consequently, various approaches to improve the physical and mechanical properties of denture-base polymers have been proposed. These include incorporation of solid metal forms and various types of fibers to provide reinforcement to fracture prone areas. In recent years there has been considerable interest in glass fiber reinforcement of polymeric denture resins. Partial fiber reinforcement using glass fiber has been shown to improve the mechanical properties of removable prostheses. However, adequate impregnation of fibers often requires the use of excessive methyl methacrylate monomer which has a deleterious effect on the mechanical properties of the fiber composite material. Purpose: The aim of the present study was to determine the effect of glass fiber polysulphone composite reinforcement on the flexural characteristics of two commonly used denture-base polymers. Materials and methods: Prefabricated E-glass fiber polysulphone composite rods, ± 3mm in diameter, with a continuous, unidirectional, non-silanized fiber concentration of ± 55 vol %, were employed as strengtheners. The reinforcement was incorporated axial to the neutral axis in standardized cylindrical heat polymerizing conventional and high impact resin test specimens 6mm in diameter and 28mm in length. The two reinforced pattern groups (n = 10) were compared with unreinforced resin control groups. A three point loading test was performed in air after storage of the specimens in water at 37°C for a period of 8 weeks. The following values were measured : flexural modulus and flexural strength. The obtained data were subjected to relevant statistical analysis. Results: The flexural modulus of the glass fiber polysulphone reinforcement was 14,106 MPa and the flexural strength 546.6 MPa. The flexural modulus of conventional denture-base resin was 1746 MPa, reinforcement increased it to 2328 MPa, and the flexural strength increased from 164 MPa to 209 MPa. The flexural modulus of high impact polymer was 1684 MPa and reinforcement increased it to 2067 MPa. The flexural strength was increased from 171 MPa to 242 MPa with reinforcement. Statistical analysis using t test showed that reinforcement affected the flexural modulus and flexural strength of polymer brands (p < : 05). Conclusion: Novel glass fiber polysulphone composite reinforcement may considerably enhance the flexural properties of multi phase denture-base polymers. / Dissertation (MSc (Prosthetic Dentistry))--University of Pretoria, 2005. / Prosthodontics / unrestricted
4

Mechanical Behaviour under Tensile Loading of Textile Reinforced Concrete with Short Fibres

Barhum, Rabea, Mechtcherine, Viktor 02 December 2011 (has links) (PDF)
This treatise addresses the influence of the addition of short dispersed and integral fibres made of alkali-resistant glass on the fracture behaviour of textile-reinforced concrete (TRC). A series of uniaxial, deformation-controlled tension tests was performed to study the strength-, deformation-, and fracturebehaviour of thin, narrow plates made of TRC both with and without the addition of short fibres. Furthermore, uniaxial tension tests on specimens reinforced with only short fibres and single-fibre pullout tests were carried out to gain a better understanding of crack-bridging behaviour, which suppresses crack growth and widening. Various effects of the addition of short fibre on the stress-strain relationship and cracking behaviour of TRC were observed and discussed with reference to microscopic investigation of fractured surfaces.
5

Možnosti využití vláknobetonů v ocelobetonových spřažených konstrukcích / Possibility of using of fibre-concrete at composite steel-concrete structures

Pozdíšek, Jan January 2013 (has links)
The aim of the offered thesis is an analysis of usage of uncommon concrete matrix and its contribution to steel-concrete composites structures. It especially refers to the area of internal supports, where usually acts negative bending moments. These statical systems are very often used for bridge structures, or even for building constructions. Nowdays, the static infuence of concrete at the area of negative moment is neglected. Only the steel part of cross section and steel reinforcement are included to the static action. This work is focused on the usage of tensile strength of uncommon concrete. The improvement of tensile strength of cement matrix is due to glass fiber reinforcement acting as scattered reinforcing. The introduction is focused on common approach of design of the structures mentioned above. Next, there is a part which describes possibilites of using fibre reinforcing until nowdays.
6

Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite

Melo, P., Ferreira, A-M., Waldron, K., Swift, Thomas, Gentile, P., Magallanes, M., Marshall, M., Dalgarno, K. 15 June 2020 (has links)
Yes / Composites have clinical application for their ability to mimic the hierarchical structure of human tissues. In tissue engineering applications the use of degradable biopolymer matrices reinforced by bioactive ceramics is seen as a viable process to increase osteoconductivity and accelerate tissue regeneration, and technologies such as additive manufacturing provide the design freedom needed to create patient-specific implants with complex shapes and controlled porous structures. In this study a medical grade poly(l-lactide) (PLLA) was used as matrix while apatite-wollastonite (AW) was used as reinforcement (5 wt% loading). Premade rods of composite were pelletized and processed to create a filament with an average diameter of 1.6 mm, using a twin-screw extruder. The resultant filament was 3D printed into three types of porous woodpile samples: PLLA, PLLA reinforced with AW particles, and PLLA with short AW fibres. None of the samples degraded in phosphate buffered solution over a period of 8 weeks, and an average effective modulus of 0.8 GPa, 1 GPa and 1.5 GPa was obtained for the polymer, particle and fibre composites, respectively. Composite samples immersed in simulated body fluid exhibited bioactivity, producing a surface apatite layer. Furthermore, cell viability and differentiation were demonstrated for human mesenchymal stromal cells for all sample types, with mineralisation detected solely for biocomposites. It is concluded that both composites have potential for use in critical size bone defects, with the AW fibre composite showing greater levels of ion release, stimulating more rapid cell proliferation and greater levels of mineralisation. / The research was funded in part by the UK EPSRC Centre for Doctoral Training in Additive Manufacturing and 3D Printing (EP/L01534X/1), the UK EPSRC Centre for Innovative Manufacture in Medical Devices (EP/K029592/1), and Glass Technology Services Ltd., Sheffield, UK.
7

Mechanical Behaviour under Tensile Loading of Textile Reinforced Concrete with Short Fibres

Barhum, Rabea, Mechtcherine, Viktor January 2011 (has links)
This treatise addresses the influence of the addition of short dispersed and integral fibres made of alkali-resistant glass on the fracture behaviour of textile-reinforced concrete (TRC). A series of uniaxial, deformation-controlled tension tests was performed to study the strength-, deformation-, and fracturebehaviour of thin, narrow plates made of TRC both with and without the addition of short fibres. Furthermore, uniaxial tension tests on specimens reinforced with only short fibres and single-fibre pullout tests were carried out to gain a better understanding of crack-bridging behaviour, which suppresses crack growth and widening. Various effects of the addition of short fibre on the stress-strain relationship and cracking behaviour of TRC were observed and discussed with reference to microscopic investigation of fractured surfaces.
8

Time dependent material properties of shotcrete for hard rock tunnelling

Bryne, Lars Elof January 2014 (has links)
In this thesis different mechanical properties for shotcrete (sprayed concrete) such as compression strength, bond strength, bending tensile strength, elastic modulus, free and restrained shrinkage as a function of its age was investigated. One of the main issues was to investigate the difference between ordinary cast concrete and shotcrete. Reliable material data for young and hardening shotcrete is scarce which in the past have made such comparisons difficult. Also, less accurate data representative for cast concrete has often been used in numerical modelling and design analyses. The focus of the project has particularly been on the properties bond strength and restrained shrinkage for which two new testing methods has been developed and evaluated. Microstructural studies have also been performed as a complement to the bond strength testing. The bond to rock is one of the most important properties for shotcrete used as rock reinforcement. During the very first time after spraying the physical properties and the bond to the rock depend on the set accelerator and the micro structure that is formed. The investigation of early age bond strength of shotcrete is of great importance both from a production perspective and a safety perspective. The newly developed method was tested and evaluated and proved that it can be used for bond strength testing already from a couple of hours after shotcreting. The bond, or adhesion, depends on several factors such as texture of the rock, the type of accelerator, application technique, etc. In this work the development of the microstructure in the interfacial transition zone (ITZ) and strength of the bond was investigated. The results show that the bond strength is related to the hydration process, i.e. the strength gain of the shotcrete. The early development of the ITZ was here studied using a scanning electron microscope (SEM) making it possible to observe changes over time, before and after proper cement hydration. Restrained shrinkage cracking of shotcrete, especially in the case of shotcrete sprayed on soft drains that are parts of a tunnel lining not continuously bonded to the rock, can be detrimental for the sustainability of an infrastructure tunnel system. Maintenance and repair costs can be high over time. It is shown that the developed test method realistically captures the behaviour of shotcrete drains on hard rock in situ. The method can be used in the evaluation of different technical solutions for avoiding or minimizing shrinkage cracks in shotcreted soft drains. It can also be used to assess the performance of shotcrete fully bonded to a rock surface, with respect to the ability to prevent cracking or to distribute possible shrinkage damage into several fine cracks instead of one wide. / <p>QC 20140526</p>
9

Endommagement par fatigue et durée de vie de structures en matériaux composites à fibres continues pour application liaison au sol / Fatigue damage and lifetime prediction of continuous fibre reinforced composites used for suspension systems application

Ben Toumi, Rim 26 October 2015 (has links)
L'allègement des véhicules est un enjeu majeur de l'industrie automobile pour participer, avec l'évolution des motorisations, à la maîtrise des consommations énergétiques et la réduction des émissions de gaz à effet de serre. Dans ce travail, nous nous intéressons à l'introduction des matériaux composites dans les pièces de structure et particulièrement dans le périmètre de la liaison au sol composé d'organes de sécurité active, sujets au phénomène de fatigue multi axiale à grand nombre de cycles.Les matériaux composites présentent une solution séduisante en raison de leurs propriétés mécaniques intéressantes combinées à une faible densité. Toutefois, la fatigue des matériaux composites reste un sujet complexe relativement peu abordé. C'est dans ce cadre que s'inscrit cette thèse qui vise à mettre en place une méthodologie de dimensionnement des composants automobiles de structure, à partir d'un composite tissé verre/époxy. Cette méthodologie s'attache à être facile d'utilisation et adaptable au calcul de structure pour être applicable en Bureau d'Études. La première étape de cette étude est la caractérisation de la tenue en service du matériau sous chargements monotones et cycliques et l'identification des cinétiques d'endommagement. Au vu des résultats expérimentaux obtenus et à partir des approches de dimensionnement existantes, un critère de fatigue multi axiale est proposé. Ensuite, une optimisation du protocole d'identification des paramètres est effectuée afin de réduire au minimum le volume des campagnes d'essais. Enfin, le critère mis en place pour évaluer la durée de vie en fatigue du matériau composite tissé est validé sur des éprouvettes trouées et sur le train avant à lame composite. / The reduction of fuel consumption and greenhouse gas emissions is one of the most important challenges facing the automotive industry. An efficient strategy to meet these targets is by reducing the weight of vehicle. In this work, we are interested in introducing composite materials in automotive structural parts and especially in suspensions which are subjected in service to high-cycle fatigue loadings. Therefore, a good prediction of fatigue life is required. As continuous fibre-reinforced composites provide good mechanical properties combined with a low density, they have been increasingly used in many lightweight structures. However, the fatigue behaviour of composites has not been widely investigated. This work aims at developing an approach to predict the lifetime in service of structural automotive components, made with woven glass / epoxy composite. This approach has to be easy to use by design engineers at the scale of the structure. The first step is the characterization of the material. Then, the processes involved in degradation of the composite subjected to both monotonic and cyclic loadings were identified.Given the experimental results and the existing approaches, a multiaxial fatigue criterion is proposed. An optimization of the identification protocol is also performed to reduce the quantity of needed experimental data. Finally, the fatigue life prediction model criterion is validated by tests on notched coupons and on composite vehicle's suspension.
10

Plazmatické povrchové úpravy skleněných vláken na bázi organokřemičitanů / Plasma surface modification of glass fibers on a basis of organosilicones

Veteška, Jaromír January 2008 (has links)
This thesis is aimed at preparation of thin plasma-polymerized films deposited on glass fibers by Plasma-Enhanced Chemical Vapor Deposition (PE CVD) from a mixture of tetravinylsilane (TVS) and oxygen gas. Plasma-polymerized films which were deposited on silicon wafers were used to characterize chemical properties and optimization of deposition process with respect to reproducibility.

Page generated in 0.2746 seconds