• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strukturelle, thermische und mechanische Charakterisierung von amorphen Eisenbasislegierungen und Glasmatrixkompositen

Siegel, Uwe 18 May 2010 (has links) (PDF)
Gegenstand dieser Arbeit ist die Entwicklung, Herstellung und Charakterisierung verschiedener glasbildender Eisenbasislegierungen, mit dem Ziel: 1. durch umfangreiche Charakterisierung der Startlegierung Fe44,63Cr4,93Co4,93Mo12,61Mn11,03C15,56B5,81Y1,5 (at.%) Möglichkeiten zu evaluieren mit dieser Legierung Komposite aus amorpher Matrix und kristalliner Zweitphase herzustellen, 2. den Einfluss der Legierungselemente Kobalt, Chrom und Molybdän auf die strukturellen, thermischen und mechanischen Eigenschaften des Startlegierungstyps zu bestimmen und 3. auf Grundlage der Startlegierung Glasmatrixkomposite mit Zusatzelementen herzustellen. Die Erkenntnisse sollen als Grundlage für die Verbesserung der plastischen Eigenschaften der hochfesten aber auch außerordentlich spröden amorphen Eisenbasislegierungen dienen. Für den Beginn der Forschungsarbeiten wurde die von Lu et al. publizierte Legierung mit der Zusammensetzung Fe44,63Cr4,93Co4,93Mo12,61Mn11,03C15,56B5,81Y1,5 at. % und einem kritischen Gießdurchmesser von 12 mm gewählt [Lu04], da aufgrund der hohen Anzahl von Legierungselementen, stark unterschiedlichen Atomgrößen und dem internen Sauerstoffgetter Yttrium zu erwarten ist, dass die Glasbildungsfähigkeit auch nach Legierungsmodifikationen hoch bleibt. Dadurch ist es möglich, die Auswirkungen von Zusammensetzungsveränderungen auf die Eigenschaften der amorphen Legierungen und Glasmatrixkomposite zu studieren. Als erstes wurde die Startlegierung umfangreich strukturell, thermisch und mechanisch charakterisiert (Kapitel 5). Daran schließt sich die Untersuchung des Einflusses der Elemente Kobalt, Chrom und Molybdän auf die thermischen, strukturellen und mechanischen Eigenschaften an (Kapitel 6). Das Kapitel 7 hat zum Ziel zu zeigen, welche Arten von Glasmatrixkompositen auf der Basis der Startlegierung herstellbar sind. Es wurden Komposite mit Zirkoniumkarbid, Titankarbid, Niobkarbid, Silber und Kupfer hergestellt und charakterisiert.
2

Examining the Mechanics Responsible for Strain Delocalization in Metallic Glass Matrix Composites

Messick, Casey Owen 01 December 2018 (has links)
Metallic glass matrix composites (MGMCs) have been developed to improve upon the ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase that is grown into an amorphous matrix as isolated dendritic trees. This work seeks to understand the mechanisms underlying strain delocalization in MGMCs in order to better direct efforts for continual progress in this class of material. A mesoscale modelling technique based on shear transformation zone (STZ) dynamics is used to do so. STZ dynamics is a coarse grained technique that can provide insight into the microscopic processes that control macroscopic behavior, but which can be difficult to resolve experimentally. A combined simulated-experimental approach to extract the individual material properties of the amorphous and crystalline phases is presented. Numerically, STZ dynamics is used to simulate nanoindentation of the crystalline and amorphous phases respectively. The indented phases are modelled as discs with varying thickness embedded in the other phase. Indentation depths are held constant. Experimentally, nanoindentation is carried out on DH2 and DH3 MGMC composites under varying loads at Stony Brook University (SBU). Specimens are cross-sectioned and using scanning electron microscopy, indentation sites are chosen so that the indenter targets individual phases. For both experimental and simulated nanoindentation, hardness and modulus values are calculated from the load-displacement data. The experimental and simulated values are normalized and compared. Good agreement between results suggests accurate characterization of the individual phases at low loads on both DH2 and DH3 composites. Length scales at which indentations begin sampling outside the intended phase are presented. Work is then presented on simulated uniaxial tensile loading of MGMCs. Dendritic microstructural sizes are varied and shear banding characteristics are measured. A competition of shear band nucleation and propagation rates that previously had only been seen in monolithic metallic glasses under certain loading conditions is found to exist in MGMCs as well. The stages of shear banding in MGMCs are presented and the influence of dendrites on shear band nucleation and propagation are discussed. It is proposed that the introduction of dendrites into the amorphous matrix work to inhibit shear band propagation and encourage shear band nucleation to delocalize strain in MGMCs. In particular, it was found that smaller dendrite sizes and spacings are better at doing so.
3

Strukturelle, thermische und mechanische Charakterisierung von amorphen Eisenbasislegierungen und Glasmatrixkompositen

Siegel, Uwe 16 April 2010 (has links)
Gegenstand dieser Arbeit ist die Entwicklung, Herstellung und Charakterisierung verschiedener glasbildender Eisenbasislegierungen, mit dem Ziel: 1. durch umfangreiche Charakterisierung der Startlegierung Fe44,63Cr4,93Co4,93Mo12,61Mn11,03C15,56B5,81Y1,5 (at.%) Möglichkeiten zu evaluieren mit dieser Legierung Komposite aus amorpher Matrix und kristalliner Zweitphase herzustellen, 2. den Einfluss der Legierungselemente Kobalt, Chrom und Molybdän auf die strukturellen, thermischen und mechanischen Eigenschaften des Startlegierungstyps zu bestimmen und 3. auf Grundlage der Startlegierung Glasmatrixkomposite mit Zusatzelementen herzustellen. Die Erkenntnisse sollen als Grundlage für die Verbesserung der plastischen Eigenschaften der hochfesten aber auch außerordentlich spröden amorphen Eisenbasislegierungen dienen. Für den Beginn der Forschungsarbeiten wurde die von Lu et al. publizierte Legierung mit der Zusammensetzung Fe44,63Cr4,93Co4,93Mo12,61Mn11,03C15,56B5,81Y1,5 at. % und einem kritischen Gießdurchmesser von 12 mm gewählt [Lu04], da aufgrund der hohen Anzahl von Legierungselementen, stark unterschiedlichen Atomgrößen und dem internen Sauerstoffgetter Yttrium zu erwarten ist, dass die Glasbildungsfähigkeit auch nach Legierungsmodifikationen hoch bleibt. Dadurch ist es möglich, die Auswirkungen von Zusammensetzungsveränderungen auf die Eigenschaften der amorphen Legierungen und Glasmatrixkomposite zu studieren. Als erstes wurde die Startlegierung umfangreich strukturell, thermisch und mechanisch charakterisiert (Kapitel 5). Daran schließt sich die Untersuchung des Einflusses der Elemente Kobalt, Chrom und Molybdän auf die thermischen, strukturellen und mechanischen Eigenschaften an (Kapitel 6). Das Kapitel 7 hat zum Ziel zu zeigen, welche Arten von Glasmatrixkompositen auf der Basis der Startlegierung herstellbar sind. Es wurden Komposite mit Zirkoniumkarbid, Titankarbid, Niobkarbid, Silber und Kupfer hergestellt und charakterisiert.
4

Phase formation and mechanical properties of metastable Cu-Zr-based alloys / Phasenbildung und mechanische Eigenschaften metastabiler Legierungen auf Cu-Zr-Basis

Pauly, Simon 10 August 2010 (has links) (PDF)
In the course of this PhD thesis metastable Cu50Zr50-xTix (0≤ x ≤ 10) and (Cu0.5Zr0.5)100-xAlx (5 ≤ x ≤ 8) alloys were prepared and characterised in terms of phase formation, thermal behaviour, crystallisation kinetics and most importantly in terms of mechanical properties. The addition of Al clearly enhances the glass-forming ability although it does not affect the phase formation. This means that the Cu-Zr-Al system follows the characteristics of the binary Cu-Zr phase diagram, at least for Al additions up to 8 at.%. Conversely, the presence of at least 6 at.% Ti changes the crystallisation sequence of Cu50Zr50-xTix metallic glasses and a metastable C15 CuZrTi Laves phase (Fd-3m) precipitates prior to the equilibrium phases, Cu10Zr7 and CuZr2. A structurally related phase, i.e. the “big cube” phase (Cu4(Zr,Ti)2O, Fd-3m), crystallises in a first step when a significant amount of oxygen, on the order of several thousands of mass-ppm (parts per million), is added. Both phases, the C15 Laves as well as the big cube phase, contain pronounced icosahedral coordination and their formation might be related to an icosahedral-like short-range order of the as-cast glass. However, when the metallic glasses obey the phase formation as established in the binary Cu-Zr phase diagram, the short-range order seems to more closely resemble the coordination of the high-temperature equilibrium phase, B2 CuZr. During the tensile deformation of (Cu0.5Zr0.5)100-xAlx bulk metallic glasses where B2 CuZr nanocrystals precipitate polymorphically in the bulk and some of them undergo twinning, which is due to the shape memory effect inherent in B2 CuZr. Qualitatively, this unique deformation process can be understood in the framework of the potential energy landscape (PEL) model. The shear stress, applied by mechanically loading the material, softens the shear modulus, thus biasing structural rearrangements towards the more stable, crystalline state. One major prerequisite in this process is believed to be a B2-like short-range order of the glass in the as-cast state, which could account for the polymorphic precipitation of the B2 nanocrystals at a comparatively small amount of shear. Diffraction experiments using high-energy X-rays suggest that there might be a correlation between the B2 phase and the glass structure on a length-scale less than 4 Å. Additional corroboration for this finding comes from the fact that the interatomic distances of a Cu50Zr47.5Ti2.5 metallic glass are reduced by cold-rolling. Instead of experiencing shear-induced dilation, the atoms become more closely packed, indicating that the metallic glass is driven towards the more densely packed state associated with the more stable, crystalline state. It is noteworthy, that two Cu-Zr intermetallic compounds were identified to be plastically deformable. Cubic B2 CuZr undergoes a deformation-induced martensitic phase transformation to monoclinic B19’and B33 structures, resulting in transformation-induced plasticity (TRIP effect). On the other hand, tetragonal CuZr2 can also be deformed in compression up to a strain of 15%, yet, exhibiting a dislocation-borne deformation mechanism. The shear-induced nanocrystallisation and twinning seem to be competitive phenomena regarding shear band generation and propagation, which is why very few shear offsets, due to shear banding, can be observed at the surface of the bulk metallic glasses tested in quasistatic tension. The average distance between the crystalline precipitates is on the order of the typical shear band thickness (10 - 50 nm) meaning that an efficient interaction between nanocrystals and shear bands becomes feasible. Macroscopically, these microscopic processes reflect as an appreciable plastic strain combined with work hardening. When the same CuZr-based BMGs are tested in tension at room temperature and at high strain rate (10-2 s-1) there seems to be a “strain rate sensitivity”, which could be related to a crossover of the experimental time-scale and the time-scale of the intrinsic deformation processes (nanocrystallisation, twinning, shear band generation and propagation). However, further work is required to investigate the reasons for the varying slope in the elastic regime. As B2 CuZr is the phase, that competes with vitrification, it precipitates in a glassy matrix if the cooling rate is not sufficient to freeze the structure of the liquid completely. The pronounced work hardening and the plasticity of the B2 phase, which are a result of the deformation-induced martensitic transformation, leave their footprints in the stress-strain curves of these bulk metallic glass matrix composites. The behaviour of the yield strength as a function of the crystalline volume fraction can be captured by the rule of mixtures at low crystalline volume fractions and by the load bearing model at high crystalline volume fractions. In between both of these regions there is a transition caused by percolation (impingement) of the B2 crystals. Furthermore, the fracture strain can be modelled as a function of the crystalline volume fraction by a three-microstructural-element body and the results imply that the interface between B2 crystals and glassy matrix determines the plastic strain of the composites. The combination of shape memory crystals and a glassy matrix leads to a material with a markedly high yield strength and an enhanced plastic strain. In the CuZr-based metastable alloys investigated, there is an intimate relationship between the microstructure and the mechanical properties. The insights gained here should prove useful regarding the optimisation of the mechanical properties of bulk metallic glasses and bulk metallic glass composites.
5

Phase formation and mechanical properties of metastable Cu-Zr-based alloys

Pauly, Simon 30 June 2010 (has links)
In the course of this PhD thesis metastable Cu50Zr50-xTix (0≤ x ≤ 10) and (Cu0.5Zr0.5)100-xAlx (5 ≤ x ≤ 8) alloys were prepared and characterised in terms of phase formation, thermal behaviour, crystallisation kinetics and most importantly in terms of mechanical properties. The addition of Al clearly enhances the glass-forming ability although it does not affect the phase formation. This means that the Cu-Zr-Al system follows the characteristics of the binary Cu-Zr phase diagram, at least for Al additions up to 8 at.%. Conversely, the presence of at least 6 at.% Ti changes the crystallisation sequence of Cu50Zr50-xTix metallic glasses and a metastable C15 CuZrTi Laves phase (Fd-3m) precipitates prior to the equilibrium phases, Cu10Zr7 and CuZr2. A structurally related phase, i.e. the “big cube” phase (Cu4(Zr,Ti)2O, Fd-3m), crystallises in a first step when a significant amount of oxygen, on the order of several thousands of mass-ppm (parts per million), is added. Both phases, the C15 Laves as well as the big cube phase, contain pronounced icosahedral coordination and their formation might be related to an icosahedral-like short-range order of the as-cast glass. However, when the metallic glasses obey the phase formation as established in the binary Cu-Zr phase diagram, the short-range order seems to more closely resemble the coordination of the high-temperature equilibrium phase, B2 CuZr. During the tensile deformation of (Cu0.5Zr0.5)100-xAlx bulk metallic glasses where B2 CuZr nanocrystals precipitate polymorphically in the bulk and some of them undergo twinning, which is due to the shape memory effect inherent in B2 CuZr. Qualitatively, this unique deformation process can be understood in the framework of the potential energy landscape (PEL) model. The shear stress, applied by mechanically loading the material, softens the shear modulus, thus biasing structural rearrangements towards the more stable, crystalline state. One major prerequisite in this process is believed to be a B2-like short-range order of the glass in the as-cast state, which could account for the polymorphic precipitation of the B2 nanocrystals at a comparatively small amount of shear. Diffraction experiments using high-energy X-rays suggest that there might be a correlation between the B2 phase and the glass structure on a length-scale less than 4 Å. Additional corroboration for this finding comes from the fact that the interatomic distances of a Cu50Zr47.5Ti2.5 metallic glass are reduced by cold-rolling. Instead of experiencing shear-induced dilation, the atoms become more closely packed, indicating that the metallic glass is driven towards the more densely packed state associated with the more stable, crystalline state. It is noteworthy, that two Cu-Zr intermetallic compounds were identified to be plastically deformable. Cubic B2 CuZr undergoes a deformation-induced martensitic phase transformation to monoclinic B19’and B33 structures, resulting in transformation-induced plasticity (TRIP effect). On the other hand, tetragonal CuZr2 can also be deformed in compression up to a strain of 15%, yet, exhibiting a dislocation-borne deformation mechanism. The shear-induced nanocrystallisation and twinning seem to be competitive phenomena regarding shear band generation and propagation, which is why very few shear offsets, due to shear banding, can be observed at the surface of the bulk metallic glasses tested in quasistatic tension. The average distance between the crystalline precipitates is on the order of the typical shear band thickness (10 - 50 nm) meaning that an efficient interaction between nanocrystals and shear bands becomes feasible. Macroscopically, these microscopic processes reflect as an appreciable plastic strain combined with work hardening. When the same CuZr-based BMGs are tested in tension at room temperature and at high strain rate (10-2 s-1) there seems to be a “strain rate sensitivity”, which could be related to a crossover of the experimental time-scale and the time-scale of the intrinsic deformation processes (nanocrystallisation, twinning, shear band generation and propagation). However, further work is required to investigate the reasons for the varying slope in the elastic regime. As B2 CuZr is the phase, that competes with vitrification, it precipitates in a glassy matrix if the cooling rate is not sufficient to freeze the structure of the liquid completely. The pronounced work hardening and the plasticity of the B2 phase, which are a result of the deformation-induced martensitic transformation, leave their footprints in the stress-strain curves of these bulk metallic glass matrix composites. The behaviour of the yield strength as a function of the crystalline volume fraction can be captured by the rule of mixtures at low crystalline volume fractions and by the load bearing model at high crystalline volume fractions. In between both of these regions there is a transition caused by percolation (impingement) of the B2 crystals. Furthermore, the fracture strain can be modelled as a function of the crystalline volume fraction by a three-microstructural-element body and the results imply that the interface between B2 crystals and glassy matrix determines the plastic strain of the composites. The combination of shape memory crystals and a glassy matrix leads to a material with a markedly high yield strength and an enhanced plastic strain. In the CuZr-based metastable alloys investigated, there is an intimate relationship between the microstructure and the mechanical properties. The insights gained here should prove useful regarding the optimisation of the mechanical properties of bulk metallic glasses and bulk metallic glass composites.:Abstract/Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . vii Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Metallic glasses and bulk metallic glasses . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Structure of metallic glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Glass formation and transformation kinetics . . . . . . . . . . . . . . . . . . 4 1.2.1 Crystallisation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Glass-forming ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . 10 1.3 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 The potential energy landscape concept . . . . . . . . . . . . . . . . . 16 1.3.2 Role of the shear modulus upon flow of a glass . . . . . . . . . . . . . 20 1.3.3 Factors affecting plastic deformation of BMGs . . . . . . . . . . . . . 25 1.4 Metastable Cu-Zr-based alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.1 Binary Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.2 Minor additions of Al and Ti to glassy Cu-Zr . . . . . . . . . . . . . . 33 2 Synthesis and characterisation methods . . . . . . . . . . 35 2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Melt spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.2 Cu-mould suction casting . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 X-ray diffraction/in-situ experiments . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Optical microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.2 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.3 Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 39 2.4 Calorimetry/ Dilatometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Ultrasound velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Mechanical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Effect of oxygen on Cu-Zr-(Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Influence of casting parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Phase formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Effect of Ti and Al on Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Phase formation and thermal stability . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Crystallisation kinetics and fragility . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Isothermal calorimetric measurements . . . . . . . . . . . . . . . . . . 64 4.2.2 Isochronal calorimetric measurements . . . . . . . . . . . . . . . . . . 67 4.3 Structure of Cu-Zr-(Al/Ti) glasses . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Glassy Cu-Zr-(Al/Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Deformation behaviour of glassy ribbons . . . . . . . . . . . . . . . . . . . . 79 5.2 Deformation behaviour of bulk metallic glasses . . . . . . . . . . . . . . . . . 83 5.2.1 Compression tests of Cu50Zr50 . . . . . . . . . . . . . . . . . . . . . . 83 5.2.2 Tensile tests of (Cu0.5Zr0.5)100-xAlx . . . . . . . . . . . . . . . . . . . . 85 5.2.3 Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.4 High-strain rate tensile tests . . . . . . . . . . . . . . . . . . . . . . . . 104 6 Cu-Zr intermetallic compounds . . . . . . . . . . . . . . . . . . . . . . . . 111 6.1 Deformation behaviour of Cu10Zr7 and CuZr2 . . . . . . . .. . . . . . . . 111 6.2 Deformation behaviour of B2 CuZr . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3 Relation between intermetallics and BMGs . . . . . . . . . . . . . . . . . . . 119 7 Cu-Zr-(Al/Ti) BMG matrix composites . . . . . . . . . . . . . . . . . . . . . . . . 123 7.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2 Deformation behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 137 9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 139 10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . 143 10.1 Isochronal transformation kinetics (Kissinger) . . . . . . . . . . . . . . . . 143 10.2 Isothermal crystallisation kinetics (Johnson-Mehl-Avrami) . . . . . . . 144 10.3 The fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . . . 144 10.4 Flow of liquids in the PEL picture . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.5 The interstitialcy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 149 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 151
6

Fracture and Deformation in Bulk Metallic Glasses and Composites

Narayan, R Lakshmi January 2014 (has links) (PDF)
Plastic flow in bulk metallic glasses (BMGs) localizes into narrow bands, which, in the absence of a microstructure that could obstruct them, propagate unhindered under tensile loading. In constrained deformation conditions such as indentation and at notch roots, extensive shear band formation can occur. A key issue in the context of fracture of BMGs that is yet to be understood comprehensively is how their toughness is controlled by various state parameters. Towards this end, the change in fracture toughness and plasticity with short term annealing above and below the glass transition temperature, Tg, is studied in a Zr-based BMG. Elastic properties like shear modulus, Poisson's ratio as well as parameters defining the internal state like the fictive temperature, Tf, density, and free volume are measured and correlation with the toughness was attempted at. While the elastic properties may help in distinguishing between tough and brittle glasses, they fail to reveal the reasons behind the toughness variations. Spherical-tip nanoindentation and microindentation tests were employed to probe the size, distributions and activation energies of the microscopic plastic carriers with the former and shear band densities with the latter. Results indicate that specimens annealed at a higher temperature, Ta, exhibit profuse shear banding with negligible changes in the local yield strengths. Statistical analysis of the nanoindentation data by incorporating the nucleation rate theory and the results of the cooperative shear model (CSM), reveals that short term annealing doesn't alter the shear transformation zone (STZ) size much. However, density estimates indicate changes in the free volume content across specimens. A model combining STZ activation and free volume accumulation predicts a higher rate in the reduction of the cumulative STZ activation barrier in specimens with a higher initial free volume content. Of the macroscopic physical properties, the specimen density is revealed to be a useful qualitative measure of enhancement in fracture toughness and plasticity in BMGs. We turn our attention next to the brittle fracture in BMGs, with the specific objective of understanding the mechanisms of failure. For this purpose, mode I fracture experiments were conducted on embrittled BMG samples and the fracture surface features were analyzed in detail. Wallner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity to be ~800 m/s, which corresponds to ~0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs occurs through hydrostatic stress assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of ~79 nm. Juxtaposition of the crack velocity with this spacing suggests that that the crack takes ~10-10 s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, are utilized to critically discuss possible causes for the nanocorrugation formation. The Taylor’s fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. One way of alleviating the fracture-related issues in BMGs is to impart a microstructure to it, which would either impede the growth of shear bands or promote the multiplication of them. One such approach is through the BMG composites (BMGCs) route, wherein a crystalline second phase incorporated in the BMG matrix. There is a need to study the effects of reinforcement content, size and distribution on the mechanical behavior of the BMGC so as to achieve an optimum combination of strength and ductility. For this purpose, an investigation into the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify “structure–property” connections in these materials. This was accomplished by employing four different processing methods—arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat—on composites with two different dendrite volume fractions, Vd. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, λ, and dendrite size, δ, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite’s properties are insensitive to the microstructural length scales when Vd is high (∼75%), whereas they become process dependent for relatively lower Vd (∼55%). Larger δ in arc-melted and forged specimens result in higher ductility (7–9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer λ result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure.

Page generated in 0.0613 seconds