361 |
Engineering mesenchymal stem cells for enhanced cancer therapySuryaprakash, Smruthi January 2018 (has links)
Glioblastoma is the most common adult malignant primary brain tumor with one of the worst prognosis. With a survival of 10 to 12 months, glioblastoma remains one of the most challenging disease to treat. The standard treatment method involves maximal possible resection of the tumor followed by radiation and chemotherapy. However, the short half-life of most chemotherapeutic drugs, high systemic toxicity and inability to cross the blood brain barrier inhibits effective delivery of the chemotherapeutics to the tumor.
An ideal drug delivery system can reach the tumor site with high efficiency and continuously release the drug at the tumor site for an extended period. Adult stem cells including neural stem cells (NSC) and mesenchymal stem cells (MSC) have inherent tumor trophic properties allowing for site-specific delivery of chemotherapeutics. They can also be genetically engineered to secrete the chemotherapeutic drug continuously making them ideal candidates for cell-based delivery system for treating glioblastoma.
MSC have been isolated from a wide range of sources including bone marrow, umbilical cord, adipose tissue, liver, multiple dental tissues and induced pluripotent stem cells. MSC are also easily amenable to viral modification allowing for easy manipulation to produce chemotherapeutic drugs. Additionally, more than 350 clinical trials using MSC have successfully established the safety of using MSC for cell-based therapies. Collectively these factors have led to the widespread use of MSC in cancer therapy. MSC have been successfully transduced to produce chemotherapeutic drugs to treat glioma, melanoma, lung cancer, ovarian cancer and breast cancer.
Despite the multitudes of advantages that cell therapy provides they are limited in three main domains (1) Low cell retention and survival at the site of the tumor (2) In ability to co-deliver multiple therapeutics and (3) In ability to deliver drugs other than peptide based drugs. This thesis details the work to engineer mesenchymal stem cells to tackle these three issues and develop a system that can increase the efficacy of glioblastoma treatment.
To increase the cellular retention and survival we engineered MSC to form multicellular spheroids and cell sheets. To co-delivery multiple therapeutics we engineered MSC to form MSC/DNA-templated nanoparticle hybrid cluster to co-deliver drugs for cancer therapy. The system showed superior performance due to the increased retention of the cells and nanoparticle at the tumor site. Finally, to deliver drugs other peptide based we engineered graphene oxide cellular patches for mesenchymal stem cells. Graphene oxide can carry diverse therapeutics and can kill the cancer cells without affecting the cellular viability of MSC.
|
362 |
Impact de la matrice extracellulaire sur la migration des cellules souches de glioblastome : un modèle tridimensionnel de culture et une nouvelle stratégie thérapeutique / The impact of the extracellular matrix on glioblastoma stem cells migration : a tridimensional culture model and a new therapeutic strategySaleh, Ali 20 June 2017 (has links)
Les glioblastomes multiformes (GBM) comptent parmi les tumeurs au pronostic le plus sombre. L’extraordinaire capacité invasive des cellules tumorales rend toutes les interventions thérapeutiques actuelles totalement impuissantes. Une sous-population de Cellules Souches de Glioblastome (CSG) hautement invasive est responsable de la récurrence tumorale. Dans le cerveau, les GBM migrent principalement le long des vaisseaux sanguins au sein de l’espace périvasculaire riche en laminine, fibronectine et collagène ainsi qu’en suivant l’alignement des fibres myélinisées du corps calleux. La Matrice Extracellulaire (MEC) de ces régions joue un rôle important dans l’invasion des GBM, mais les mécanismes mis en jeu n’ont pas été complètement dévoilés. De plus, le développement de nouvelles thérapies anti-migratrices ciblant l’interaction des GBM avec la MEC reste encore limité. Dans le but de mimer la composition biochimique et les propriétés mécaniques de la MEC cérébrale et d’étudier leur rôle(s) dans la migration des CSG, nous avons développé un nouveau support de nanofibres (NF) alignées et fonctionnalisées avec de la laminine. Mes travaux de thèse ont montré que les NF génèrent un microenvironnement tridimensionnel (3D) favorisant l’adhésion et la migration des CSG. Cette adhésion est améliorée en comparaison avec les supports planaires (SP) conventionnels (2D) et récapitule mieux les mécanismes d’interaction des CSG avec la MEC au cours de l’invasion dans le modèle murin de tumeurs xénogreffées. Dans ces conditions physiologiques plus convenables générées par les NF, la variation des composantes biochimiques et mécaniques de la MEC affecte la migration des CSG. La présence ou l’absence de laminine régule le mode migratoire et l’orientation de fibres contrôle la direction de migration des CSG. D’un autre coté, l’altération de la glycosylation des protéines de la surface cellulaire module l’interaction des cellules tumorales du cerveau avec la MEC et augmente leur invasion. La deuxième partie de mes travaux de thèse a permis de démontrer que les glycomimétiques phostines « 3.1a » réorganisent le processus de la N-glycosylation des CSG diminuant leur invasivité in vitro et in vivo en inhibant les voies de signalisation de la kinase FAK et du récepteur de TGF-β impliqués dans l’interconnexion cellule-MEC. / Glioblastoma Multiforme (GBM) is a biologically aggressive tumor with an extremely poor prognosis. The highly invasive capacity of a subpopulation of Glioblastoma Initiating Cells (GIC) makes complete surgical resection impossible. GBM dissemination occurs along preexisting brain structures such as the perivascular space rich in laminin, fibronectine and collagen as well as the aligned myelinated fibers of the corpus callosum. The Extracellular Matrix (ECM) of these cerebral regions plays an important role during GBM invasion, but the underlying mechanisms remain largely unknown. Accordingly, the development of new anti-migratory therapies targeting the cell-ECM interactions is lacking. In order to mimic the compositional and physical properties of the cerebral ECM and to investigate their role(s) in GBM invasion, we have set up a new aligned nanofibers (NF)scaffold functionalized with laminin. My work demonstrated that the NFs constitute a tridimensional (3D) microenvironment supporting GIC adhesion and migration. The cell-ECM adhesion is improved on the NF in comparison to the conventional 2D planar surfaces (PS). Furthermore, the mechanisms of GIC interaction with the ECM on the NF are similar to those observed in the human GBM xenograft murine model. In this physiologically more relevant 3D microenvironment reproduced by the NF, the variation of the different biochemical and mechanical components of the ECM affects the migration of GIC. The presence or absence of laminin on the NF regulates the mode of migration and the orientation of the fibers dictates the direction of migration of GIC. On the other hand, the glycosylation that decorates cell surface proteins modulates the interaction of GBM tumor cells with the ECM and its alteration increases their invasion. The second part of my thesis demonstrated that the glycomimetics phostines « 3.1a » remodel the N-glycosylation of GIC and decrease their invasivity in vitro and in vivo via the inhibition of FAK and TGFβ-R signaling pathways known to be implicated in the cell-ECM intercommunication.
|
363 |
Mécanotransduction des cellules souches de glioblastome dans un nouveau modèle de culture tridimensionnel : implication de la MGAT5 dans la perception de l'environnement mécanique / Mechanotransduction of glioblastoma stem cells in a new 3D matrix for cell cultureMarhuenda, Emilie 28 November 2018 (has links)
Les cellules souches de glioblastomes (GSC) sont sensibles aux propriétés mécaniques de leur microenvironnement et utilisent la rigidité pour favoriser leur invasion.Dans ce contexte, nous avons développé une matrice 3D fibrillaire artificielle permettant de récapituler in vitro les comportements migratoires observés in vivo. Cette matrice étant hautement plastique, nous avons pu moduler la rigidité, la chimie de surface ou encore l'alignement des fibres.Dans un premier temps nous avons modifié leur chimie de surface grâce à l’ajout de protéines de la matrice extracellulaire (MEC) puis déposé des neurosphères (NS) de GSC sur ce tissu artificiel. L’ajout de laminine nous a permis d’observer le passage d’un comportement migratoire collectif à individuel.Dans un deuxième temps nous avons modulé la rigidité des fibres. Après cinq jours de migration des GSC dans différentes conditions de rigidités, nous avons constaté une augmentation de la vitesse de migration à la rigidité intermédiaire de 166kPa par rapport à la condition plus souple de 3,2 kPa et à la condition plus rigides de 1260kPa. Cette capacité migratoire maximale dans nos conditions est associée à des changements de morphologie des GSC, à une augmentation de l'expression des protéines associée à la transition épithélio-mésenchymateuse (EMT) et à une modification de la régulation des protéines des adhérences focales.La surexpression de Mannoside acetyl glucosaminyltransférase 5 (MGAT5) est associée aux tumeurs malignes et est impliquée dans la formation de regroupement de protéines membranaires grâce à la formation d’un treillis. Elle favorise également la maturation des adhérences focales, la migration cellulaire, l'invasion et l’EMT, entraînant ainsi des avantages fonctionnels pour les cellules tumorales. Au vu des résultats précédents sur l'expression des protéines EMT et des modifications de la régulation des protéines des adhérences focales, nous avons généré des GSC n’exprimant plus la MGAT5 grâce à la technique CRISPR Cas9 et les avons placées en NS sur les matrices 3D présentant différentes rigidité. Nous avons alors observé une diminution de la vitesse de migration à 166kPa par rapport aux GSC contrôles, associée à une diminution de l'EMT et de la maturation des adhérences focales. Par conséquent, cette étude démontre l'implication de la glycosylation et plus particulièrement de la glycosylation médiée par la MGAT5 sur la mécanotransduction des GSC. / Glioblastoma stem cells (CSC) have been reported to be sensitive to the mechanical properties of the surrounding tissue/microenvironment and to use the microenvironment stiffness to enhance invasion.In this context, we developed a 3D artificial fibrillary tissue which can allow in vitro recapitulation of the migration behavior observed in vivo. This 3D matrix is highly plastic which allows for modulation of stiffness, surface chemistry and fibers alignment.On the first hand, we functionalized the fibers with extracellular matrix proteins and then we plated GSCs neurospheres (NS) on the developed 3D artificial tissue. The addition of laminin modulates the migration behaviour from single cell to collective mode.On the second hand we have modified stiffness of the fibers. After five days of GSCs NS migration on 3D electrospun fibers of different stiffnesses, we have seen an increase in migration velocity for an intermediate stiffness of 166kPa in comparison with our softest 3.2 kPa and stiffest stiffnesses (1260 kPa). This maximum migration rate is associated with changes in cell shape, increase of EMT proteins expressions and modifications of focal adhesion proteins regulation.Mannoside acetyl glucosaminyltransferase 5 (MGAT5) overexpression is associated with malignant tumors and it is implicated in the clustering of membrane proteins through lattice formation, focal adhesions, cell migration, invasion, and epithelial-to-mesenchymal transition (EMT), resulting in functional advantages for tumor cells.In light of previous results about of EMT proteins expressions and modifications of focal adhesion proteins regulation, we generated MGAT5 CRISPR Cas9 GSCs and placed it on 3D matrix with different stiffnesses. We observe a decrease in migration velocity at the intermediate stiffness in comparison with GSCs WT associated with a decrease in focal adhesion maturation and EMT. This study demonstrates the implication of glycosylation and more particularly MGAT5-mediated glycosylation on GSCs mechanotransduction.
|
364 |
Neuroprotective therapies centred on post-translational modifications by sumoylationBernstock, Joshua January 2018 (has links)
No description available.
|
365 |
Implications des gènes immuns et des cellules immunes dans le glioblastome / Implications of immune-associated genes and immune cells in glioblastoma.Vauleon, Elodie 25 June 2013 (has links)
Introduction : Le glioblastome (GBM) est la tumeur cérébrale primitive la plus fréquente et la plus grave de l’adulte. Des études épidémiologiques ont mis en évidence que les antécédents d’allergie sont un facteur protecteur, soulignant le possible impact de l’immunité sur le GBM. Plusieurs études transcriptomiques ont également mis en évidence des signatures immunes plus ou moins associées à la survie. Matériel et méthodes : Pour clarifier ce lien et déterminer quels gènes immuns étaient les plus impliqués dans le GBM, nous avons étudié l’expression de 791 gènes immuns dans des échantillons de GBM et de cerveaux normaux. Les interactions entre les gènes immuns ont été étudiées par une analyse de co-expression. Nous avons ensuite recherché une association entre les gènes immuns et la survie selon 3 méthodes statistiques, avant d’établir un modèle de risque mathématique validé sur plusieurs jeux de données. Enfin, nous avons étudié les cellules immunes infiltrantes sur des échantillons de gliomes dont 73 GBM par cytométrie de flux. Résultats : Un profil d’expression génique différent significativement entre le cerveau normal et le GBM a été établi de manière robuste, mais pas au sein des GBM. L’analyse de co-expression a mis en évidence 6 modules dont 5 sont enrichis en gènes ayant un lien avec la survie. Cent huit gènes immuns ont une association significative avec la survie et un prédicteur de risque à 6 gènes immuns a permis de distinguer deux groupes de patients en fonction de leur survie, y compris chez les patients dont la tumeur a un promoteur MGMT méthylé et dans le sous-groupe de GBM proneuraux. Enfin, nous avons mis en évidence, dans tous les échantillons de GBM analysés, une infiltration leucocytaire par des cellules macrophagiques/microgliales et parfois par des cellules lymphocytaires ou granulocytaires. L’infiltration de lymphocytes uniquement est associée significativement avec la survie dans notre cohorte. Conclusion : Des gènes, impliqués dans diverses fonctions immunes, sont différentiellement exprimés entre le cerveau normal et le GBM et au sein des GBM. Un prédicteur à 6 gènes robuste a été établi, il sépare les patients en 2 groupes bas et haut risque y compris ceux ayant un bon pronostic. Nous avons enfin mis en évidence dans une série de GBM une infiltration de cellules immunes, dont une infiltration lymphocytaire associée positivement à la survie. / Background: Glioblastoma is the most common and lethal primary brain tumor in adults. Epidemiological studies have revealed that a history of allergies is a protective factor, thereby underlining the likely impact of the immune system on GBM. A number of transcriptomic studies have also identified immune signatures more or less associated with patient survival. Methods: In order to clarify and identify which immune-associated (IA) genes were the most involved in GBM, we studied the expression of 791 immune genes in GBM and normal brains samples. Interactions between IA genes were studied through an analysis of co-expression network. We then searched for a link between IA genes and patient survival according to 3 statistical methods, before defining a mathematical risk model based on different data sets. Finally, we studied the infiltrative immune population of 73 GBM by cytometry. Results: A significantly different profile of IA genes expression between healthy brains and GBM was consistently defined, but not among GBM. The analysis of co-expression network revealed 6 modules, 5 of which were enriched by genes associated with patient survival. 108 IA genes have a significant association with patient survival and the 6-IA gene risk predictor allowed us to distinguish two groups of patients according to their survival, including patients whose tumor had a methylated MGMT gene promoter and in the subset of proneural GBM. Finally, in every analyzed GBM sample, we have shown that there was a leukocyte infiltration by macrophages/microglial cells and sometimes by lymphocytes or granulocytes. Only the lymphocytes infiltration was significantly associated with the survival in our group of patients. Conclusion: IA genes that are involved in various immune functions are expressed differentially between healthy brains and GBM and amongst GBM. A robust 6-IA gene risk predictor was defined: it divides patients into two low and high risk groups, including those who have a good prognosis. Finally, we revealed an infiltration of immune cells in a series of GBM, only the lymphocytic infiltration was positively associated with patient survival.
|
366 |
Prospec??o farmacol?gica de compostos sint?ticos ?alkal?ides-like? para o tratamento de gliomas malignosOliveira, Mona das Neves 08 May 2013 (has links)
Submitted by Verena Bastos (verena@uefs.br) on 2015-08-05T22:08:06Z
No. of bitstreams: 1
Disserta??o Mona Oliveira vers?o final Maio2003 PPGbiotec.pdf: 4793209 bytes, checksum: 5e62150796f4527c8d492f92de5041e2 (MD5) / Made available in DSpace on 2015-08-05T22:08:06Z (GMT). No. of bitstreams: 1
Disserta??o Mona Oliveira vers?o final Maio2003 PPGbiotec.pdf: 4793209 bytes, checksum: 5e62150796f4527c8d492f92de5041e2 (MD5)
Previous issue date: 2013-05-08 / Funda??o de Amparo ? Pesquisa do Estado da Bahia - FAPEB / Glioblastomas (GBMs) are the most common and aggressive primary tumors of the CNS. The survival of patients with this diagnosis remains very low, with poor prognosis even after surgical therapy associated with radiotherapy and chemotherapy. The present work carried out a screening for 24 synthetic ?alkaloid-like? to determine their effects on cell viability of quimioresistentes human (Gl-15 and U251) glioblastoma cells and murine (C6) glioma cells. Among the alkaloids tested (100?M) RLB87 was the most cytotoxic for transformed cells, inhibiting the viability in 75.0% 97.2% 76.6% of GL-15, U251 and C6 cells, respectively, after 72 h exposure, and it did not show toxicity to normal glial cells. It was also observed that RLB87 promoted apoptosis, 24 and 72 h after treatment, in a time-dependent manner. Moreover RLB87 also inhibited cell migration and proliferation with cells arrest at G0/G1 phase, since 24 h after treatment. Additionally, the cytotoxicity of four RLB87 analogues was tested in view to elucidate important aspects in chemical structure, required for its activity. We observed positive correlation between cytotoxic effect and isomeric of phenyl functions, with ester function and also lipophilicity. These finding suggest the ?alkaloid-like? RLB87 as a promising anticancer agent as well as a prototype for new agents for treatment of malignant and recurrent gliomas. / Glioblastomas (GBMs) s?o os tumores prim?rios mais comuns e agressivos do SNC. A sobrevida dos pacientes com esse diagn?stico continua muito baixa, tendo progn?stico ruim mesmo ap?s terapia cir?rgica seguida de radio e quimioterapia. No presente trabalho, foi realizada a prospec??o de 24 mol?culas de s?ntese, alkaloids-like, para determina??o de seus efeitos sobre a viabilidade de c?lulas quimioresistentes de
glioblastoma humano (GL-15 e U251) e murina (C6). Entre os compostos testados ? (100JM), RLB87 foi o mais citot?xico para c?lulas transformadas, inibindo a viabilidade em 75,0%, 97,2%, 76,6% da GL-15, U251 e C6, respectivamente e o mesmo n?o apresentou toxicidade para c?lulas gliais normais. Observou-se, que o RLB87 promoveu apoptose 24 e 72 h ap?s o tratamento de forma tempo-dependente. O RLB87 igualmente inibiu a prolifera??o celular com acumulo na fase G0/G1 do ciclo celular ap?s 24 h. A migra??o das c?lulas de glioma foi tamb?m inibida ap?s tratamento com RLB87. Adicionalmente 4 an?logos do RLB87 foram tamb?m avaliados, elucidando aspectos importantes na estrutura qu?mica, requeridos para sua atividade, que possuem correla??o positiva com regioisomeria das fenilas, presen?a da fun??o ?ster e
lipofilicidade. O RLB87 ? apresentado como promissor agente antineopl?sico assim como um prot?tipo para novos agentes terap?uticos para o tratamento de gliomas malignos e recidivados.
|
367 |
O papel da apoptose, do índice de proliferação celular, do bcl-2 e do p53 no prognóstico dos glioblastomasRibeiro, Marlise de Castro January 2003 (has links)
Resumo não disponível
|
368 |
Rôle des protéines de liaison à l'ARN hnRNP H et hnRNP F dans les régulations traductionnelles dans les glioblastomes / Role of the RNA binding proteins hnRNP H and hnRNP F in translational regulation in glioblastomaLe Bras, Morgane 15 November 2018 (has links)
Le glioblastome multiforme (GBM) est une tumeur cérébrale extrêmement agressive associée à un mauvais pronostic. C'est pourquoi, il apparaît nécessaire d'identifier les mécanismes moléculaires participant au développement des GBM ainsi qu'à leurs résistances aux traitements afin de développer de nouvelles approches thérapeutiques. Récemment, il a été montré que les régulations traductionnelles jouent un rôle fondamental dans les propriétés agressives du GBM. Les protéines de liaison à l'ARN (RBP) sont des acteurs majeurs de ces régulations dont l'expression/activité est altérée dans les GBM. Les RBP hnRNP HF (HF) font partie des RBP les plus surexprimées dans les GBM et leur contribution dans la régulation traductionnelle des GBM n'a encore jamais été investiguée. Nous avons émis l'hypothèse que hnRNP H et hnRNP F soient au centre d'un réseau de régulations post-transcriptionnelles impactant la machinerie traductionnelle qui contrôle le développement tumoral et la résistance aux traitements des GBM. Nos résultats montrent qu'HF régulent la prolifération et la réponse aux traitements car leur perte d'expression (i) diminue la prolifération des GBM (modèle cellulaire, sphéroïde et xénogreffes in vivo), (ii) active les voies de réponse aux dommages à l'ADN et (iii) sensibilise les cellules de GBM aux irradiations. De plus, nous avons identifié un nouveau rôle pour HF en tant que régulateurs de la traduction. En effet, nos données montrent que les hnRNP HF contrôlent la traduction d'un ensemble d'ARNm en régulant l'expression et l'activité de facteurs d'initiation ainsi qu'en collaborant avec des ARN hélicases partenaires en ciblant des ARNm impliqués dans des processus reliés au développement tumoral et la résistance aux traitements possédant des structures secondaires G-quadruplexe dans leurs 5'UTR. Les données que nous avons générées suggèrent que hnRNP H et hnRNP F sont des régulateurs traductionnels essentiels au développement tumoral et à la résistance aux traitements des GBM. / Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors with poor prognosis. Understanding the molecular mechanisms involved in the development and resistance to treatments of gliomas could improve treatment efficiency. Recently, it has been demonstrated that translational regulations play a key role in the GBM aggressivity. RNA binding proteins (RBP) are major regulators of these processes and have altered expression / activity in GBM. The RBP hnRNP H and hnRNP F (HF) are among the most overexpressed RBP in GBM and their role in GBM translational regulation has never been investigated yet. We hypothesize that HF are at the core of a post-transcriptional regulation network which impacts the translational machinery that controls GBM tumor development and resistance to treatment. We have demonstrated that hnRNP H and hnRNP F regulate proliferation and response to treatment because their depletion (i) decreases the GBM proliferation (cell line model, spheroid and in vivo xenografts), (ii) activates the DNA damage response pathways and (iii) sensitizes the GBM cells to irradiation. We have identified HF as new regulators of GBM translation. Indeed, our data show that hnRNP H and hnRNP F control mRNA translation by regulating expression/activity of initiation factors and in collaboration with RNA helicases by targeting mRNA involved in oncogenic processes and containing secondary structures called G-quadruplex in their 5'UTR. The data that we have generated suggest that HF are essential translational regulators involved in tumor development and resistance to treatment in GBM.
|
369 |
CYTOKINE CONTROL OF GLIOMA ADHESION AND MIGRATIONBaghdadchi, Negin 01 June 2014 (has links)
Glioblastoma multiforme (GBM) is the most lethal primary central nervous system tumor, with median survival after diagnosis of less than 12 months because dissemination into the brain parenchyma limits the long-term effectiveness of surgical resection, and because GBM cells are resistant to radiation and chemotherapy. This sad dismal prognosis for patients with GBM emphasizes the need for greater understand of the fundamental biology of the disease.
Invasion is one of the major causes of treatment failure and death from glioma, because disseminated tumor cells provide the seeds for tumor recurrence. Inflammation is increasingly recognized as an important component of invasion. In the brain, inflammation can occur by activation of microglia, the resident macrophages of the brain, or by tumor-associated blood macrophages. Therefore, we hypothesize that activity of the innate immune system in the brain can influence tumor progression by secreting cytokines such as Tumor Necrosis Factor alpha (TNF-α). In this study, we show that patient-derived glioma spheres undergo morphological changes in response to TNF‑α that are associated with changes in migration behavior in vitro. These morphological changes include appearance of tumor islands in site different from where the primary tumor cells were seeded. We further showed that TNF‑α treated cells significantly increased expression of cell adhesion molecules such as CD44 and VCAM-1. Furthermore, we demonstrate increased cell density also caused increased in expression of cell adhesion molecules. The extent to which these are recapitulated in vivo will be investigated.
|
370 |
Molecular mechanisms of the anti-cancer action of schweinfurthinsZheng, Chaoqun 01 May 2015 (has links)
Schweinfurthins are a family of natural products with significant anti-cancer activities. They were originally identified in the National Cancer Institute (NCI) human 60 cancer cell line screening. The growth inhibition profile of schweinfurthins is distinct from other clinically used anti-cancer agents, indicating that they have a novel mechanism of action or have a previously unrecognized protein target. Previous studies showed that schweinfurthins affect multiple cellular processes in cancer cells. For example, schweinfurthins can alter cytoskeleton organization, induce ER stress and apoptosis, and inhibit the mevalonate pathway. The mevalonate pathway is responsible for the production of isoprenoids and cholesterol, which have been shown to play regulatory roles in the Hedgehog (Hh) signaling pathway. In this study, we found that the Hh signaling pathway in NIH-3T3 and SF-295 cells was inhibited by schweinfurthins. The supplementation of mevalonate and cholesterol partially restored Hh signaling, indicating that schweinfurthins inhibit Hh signaling partially by down-regulating the products from the mevalonate pathway. Interestingly, schweinfurthins in combination with cyclopamine, an inhibitor of the Hh singaling pathway, synergistically decreased cell viability.
In order to better understand the underlying mechanism of the anti-cancer action of schweinfurthins, we attempted to identify the protein target of schweifnurthins. Affinity chromatography was performed to pull down the protein target. We found that schweinfurhtins bound to the M2 isoform of pyruvate kinase (PKM2) and inhibit its pyruvate kinase activity. Knockdown of PKM2 by siRNA increased the sensitivity of SF-295 cells to schweinfurthins. The inhibition of PKM2 by schweinfurthins led to a reduction in the rate of glycolysis in cancer cells. Fructose 1,6-bisphosphate (FBP), an activator of PKM2, could alleviate schweinfurthin-mediated inhibition on PKM2 and glycolysis. Notably, FBP could also partially reverse the reduction of cell viability in the presence of schweinfurthins. Taken together, these studies revealed the mechanism by which schweinfurthins inhibit Hh signaling. In addition, we uncovered PKM2 as a schwienfurthin target and highlighted the importance of glycolysis suppression as a mechanism of the anti-cancer action of schweinfurthins.
|
Page generated in 0.0439 seconds