• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms for Oxidized or Glycated LDL-induced Oxidative Stress and Upregulation of Plasminogen Activator Inhibitor-1 in Vascular Cells.

Sangle, Ganesh 13 September 2010 (has links)
Atherosclerotic cardiovascular disease is the leading cause of death of adults in North America. Diabetes is a classical risk factor for atherosclerotic cardiovascular disease. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis. Elevated levels of PAI-1, oxidized low-density lipoprotein (oxLDL) and glycated LDL (glyLDL) were detected in patients with diabetes. Increased oxidative stress is associated with diabetic cardiovascular complications. Previous studies in our laboratory demonstrated that oxLDL or glyLDL increased the production of PAI-1 or reactive oxygen species (ROS) in vascular endothelial cells (EC). This study was undertaken to investigate transmembrane signaling mechanisms involved in oxLDL or glyLDL-induced upregulation of PAI-1 in cultured vascular EC. Further, we examined the mechanism for oxLDL or glyLDL-induced oxidative stress in EC. The results of the present studies demonstrated novel transmembrane signaling pathway for oxLDL-induced PAI-1 production in vascular EC. We demonstrated that lectin-like oxLDL receptor-1, H-Ras, a small G-protein and Raf-1/ERK-1/2 mediate oxLDL-induced PAI-1 expression in cultured EC. GlyLDL may activate EC via a distinct transmembrane signaling pathway. The results of the present study demonstrated that receptor for advanced glycation end products, NADPH oxidase and H-Ras/Raf-1 are implicated in the upregulation of heat shock factor-1 or PAI-1 in vascular EC under diabetes-associated metabolic stress. We investigated the effects of oxLDL or glyLDL on mitochondrial function in EC. Treatment with oxLDL or glyLDL significantly impaired the activities of electron transport chain (ETC) enzymes and also increased mitochondria-associated ROS in EC. The findings suggest that oxLDL or glyLDL attenuated activity of ETC and increased ROS generation in EC, which potentially contributes to oxidative stress in vasculature. In conclusion, diabetes-associated lipoproteins may upregulate stress response mediators and PAI-1 production via distinct transmembrane signaling pathways. OxLDL or glyLDL may increase ROS production via NOX activation and the impairment of mitochondrial ETC enzyme activity in EC. The understanding and identification of the regulatory mechanisms involved in diabetes-associated lipoprotein-induced signaling may help pharmacological design for the management of diabetic cardiovascular complications.
2

Mechanisms for Oxidized or Glycated LDL-induced Oxidative Stress and Upregulation of Plasminogen Activator Inhibitor-1 in Vascular Cells.

Sangle, Ganesh 13 September 2010 (has links)
Atherosclerotic cardiovascular disease is the leading cause of death of adults in North America. Diabetes is a classical risk factor for atherosclerotic cardiovascular disease. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis. Elevated levels of PAI-1, oxidized low-density lipoprotein (oxLDL) and glycated LDL (glyLDL) were detected in patients with diabetes. Increased oxidative stress is associated with diabetic cardiovascular complications. Previous studies in our laboratory demonstrated that oxLDL or glyLDL increased the production of PAI-1 or reactive oxygen species (ROS) in vascular endothelial cells (EC). This study was undertaken to investigate transmembrane signaling mechanisms involved in oxLDL or glyLDL-induced upregulation of PAI-1 in cultured vascular EC. Further, we examined the mechanism for oxLDL or glyLDL-induced oxidative stress in EC. The results of the present studies demonstrated novel transmembrane signaling pathway for oxLDL-induced PAI-1 production in vascular EC. We demonstrated that lectin-like oxLDL receptor-1, H-Ras, a small G-protein and Raf-1/ERK-1/2 mediate oxLDL-induced PAI-1 expression in cultured EC. GlyLDL may activate EC via a distinct transmembrane signaling pathway. The results of the present study demonstrated that receptor for advanced glycation end products, NADPH oxidase and H-Ras/Raf-1 are implicated in the upregulation of heat shock factor-1 or PAI-1 in vascular EC under diabetes-associated metabolic stress. We investigated the effects of oxLDL or glyLDL on mitochondrial function in EC. Treatment with oxLDL or glyLDL significantly impaired the activities of electron transport chain (ETC) enzymes and also increased mitochondria-associated ROS in EC. The findings suggest that oxLDL or glyLDL attenuated activity of ETC and increased ROS generation in EC, which potentially contributes to oxidative stress in vasculature. In conclusion, diabetes-associated lipoproteins may upregulate stress response mediators and PAI-1 production via distinct transmembrane signaling pathways. OxLDL or glyLDL may increase ROS production via NOX activation and the impairment of mitochondrial ETC enzyme activity in EC. The understanding and identification of the regulatory mechanisms involved in diabetes-associated lipoprotein-induced signaling may help pharmacological design for the management of diabetic cardiovascular complications.
3

Diabetes-associated metabolic stress on the regulation of endothelial nitric oxide synthase content and mitochondrial function

Mohanan Nair, Manoj Mohan 07 April 2015 (has links)
Nitric oxide (NO), a vasoprotective and ubiquitous signaling molecule generated from the endothelial cells (EC) by the enzyme endothelial nitric oxide synthase (eNOS) have a vital role in regulation of vascular function and integrity. However, a significant attenuation of eNOS and NO leads to endothelial dysfunction (ED) and increased risk of cardiovascular disease (CVD) in diabetes. Lipoproteins particularly LDL, undergo glycation in diabetic patients and turns it into pro-atherogenic glycated LDL (glyLDL). However, the impact of glyLDL on eNOS, the transmembrane signalling events, involvement of mitochondrial and endoplasmic reticulum (ER) stress in EC remains unclear. Also, literatures reveal impaired platelet mitochondrial function in diabetes patients; however, the impact of family history of diabetes on platelet mitochondrial bioenergetics still remains unknown. In the present study, we had provided the evidence for diabetes-associated metabolic stress involving glyLDL can attenuate eNOS protein, gene and activity in EC, as well as glyLDL and high glucose attenuates eNOS content in EC. Receptor of advanced glycation end products (RAGE) and H-Ras pathway are implicated in the upstream signalling events in the downregulation of eNOS in EC. In addition, ER stress, impaired mitochondrial function due to significant reduction of complex-specific oxygen consumption and bioenergetics were identified in glyLDL-treated EC. Further, we have also detected significant impairment in platelet mitochondrial bioenergetics in healthy individuals with familial history of diabetes. Identifying the mechanisms involved in diabetes associated metabolic stress induced signaling in EC and early detection of mitochondrial impairment in healthy individuals will help to find new targets for the prevention and treatment of diabetic cardiovascular complications and improve quality of life in diabetic patients. / May 2015

Page generated in 0.0515 seconds