Spelling suggestions: "subject:"glycolysis."" "subject:"hydrogenolysis.""
1 |
Metabolic inhibition in the ureterBullock, Anthony James January 1998 (has links)
No description available.
|
2 |
Relationships between MDMA induced increases in extracellular glucose, glycogenolysis in brain and hyperthermiaPACHMERHIWALA, RASHIDA 23 April 2008 (has links)
No description available.
|
3 |
Glucose as a Protein-Condensing Cellular Solute / タンパク質の凝集を促進する細胞内溶質としてのグルコースNoda, Naotaka 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24090号 / 医博第4866号 / 新制||医||1059(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 岩田 想, 教授 林 康紀, 教授 松田 道行 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
4 |
pH dynamics, glycogenolysis and phosphoenergetics in isolated cell free reconstituted systems and in mouse skeletal muscle /Vinnakota, Kalyan Chakravarthy. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 146-160).
|
5 |
The Effects of Pre-Exercise Carbohydrate Supplementation on Resistance Training Performance During an Acute Resistance Training SessionRaposo, Kelly 01 January 2011 (has links)
Abstract
It appears that "carbohydrate loading" may enhance the performance of resistance training, but studies on CHO supplementation prior to a resistance-training bout are limited and have resulted in conflicting findings. PURPOSE: To investigate the effects of pre-exercise CHO supplementation on high-intensity (>75% 1RM) resistance training performance for resistance-trained women during an acute bout of resistance exercise. METHODS: Thirteen resistance trained female participants (21.9 ± 4.8 yrs; 64.5 ± 3.0 in; 137.0 ± 14.8 lbs) came to the Exercise and Performance Nutrition Laboratory on three separate occasions; the day of the Familiarization Trial (FT) and the two Exercise Testing sessions (ET1 and ET2, respectively) all separated by seven days. Familiarization testing determined each participant's 1RM of the bench press and leg press and then 75% of the bench press 1RM and 85% of the leg press 1RM was determined. The participants were then randomly assigned to either the CHO or P treatment session using a double blind, counterbalanced technique in a cross-over design with each participant consuming 1.0 g CHO/kg body weight or a non-caloric P beverage 60 minutes before beginning the exercise bout for each ET. The total volume of weight lifted during five sets of the bench press, the total volume of the weight lifted during five sets of the leg press, and whole body total lifting volume was analyzed by a two-way repeated measures within subjects ANOVA with significance set at P <.05. RESULTS: There was no statistically significant difference between the CHO and P treatments in the three variables analyzed. Specifically total volume of weight lifted in pounds during five sets of the bench press was 3,200 (± 912) and 3,152 (± 852) (p = 0.655), total volume of weight lifted during five sets of the leg press was 44,004 (± 29,711) and 37,705 (± 19,681) (p = 0.136), and total lifting volume was 47,204 (± 30,399) and 40,857 (± 20,434) for the CHO and P treatment, respectively (p = 0.138). CONCLUSIONS: Pre-exercise CHO supplementation does not improve high-intensity resistance training performance for resistance-trained women during an acute resistance training session. PRACTICAL APPLICATIONS: It is evident that consuming CHO 60 minutes prior to performing resistance training exercises will not increase the number of sets, repetitions, or total work volume completed during acute high-intensity (>75% 1RM) resistance training sessions for women. During lower-intensity resistance training sessions, however, pre-exercise CHO supplementation may provide ergogenic effects and enhance resistance-training performance.
|
6 |
Farmakologické modifikace potenciálních signálních systémů regulujících metabolismus adipocytů a hepatocytů a jejich vliv na obezitu / Pharmacological modifications of potential signal systems regulating metabolism of adipocytes and hepatocytes and their influence on obesityHodis, Jiří January 2011 (has links)
v anglickém jazyce: Thesis abstract: Background and aims: Both obesity and metabolic syndrome form severe health problems in the whole world. Nevertheless the armament of pharmacotherapy for both diseases remains unsatisfactory. We aimed our work to main organs in risk of the mentioned diseases -liver and visceral fat using hepatocytes and visceral adipocytes as model. We detected 3 main metabolic and signalization activities- glycogenolysis, Nitric oxide (NO) production and transcription of inducible NO synthase (iNOS) in hepatocytes, lipolysis, NO production and iNOS transcription rate in adipocytes. We directed our interest to combination of peroxisome proliferation activator receptor γ (PPARγ) agonist, antagonist and β3 adrenergic agonist in the culture of epididymal rat adipocytes in the first part of our work. While in the second part we investigated the influence of β and α adrenergic mimetics, adrenergic blockers in the culture of rat high glycogen content hepatocytes. Methods: NO production was detected under the active agents treatments by detection of NO oxidative products NO2 and NO3 in media. Glycogenolysis was measured as free glucose rise released by hepatocytes into the media. NOS transcription level was extrapolated after comparative polymerase chain reaction with reverse...
|
7 |
Farmakologické modifikace potenciálních signálních systémů regulujících metabolismus adipocytů a hepatocytů a jejich vliv na obezitu / Pharmacological modifications of potential signal systems regulating metabolism of adipocytes and hepatocytes and their influence on obesityHodis, Jiří January 2011 (has links)
v anglickém jazyce: Thesis abstract: Background and aims: Both obesity and metabolic syndrome form severe health problems in the whole world. Nevertheless the armament of pharmacotherapy for both diseases remains unsatisfactory. We aimed our work to main organs in risk of the mentioned diseases -liver and visceral fat using hepatocytes and visceral adipocytes as model. We detected 3 main metabolic and signalization activities- glycogenolysis, Nitric oxide (NO) production and transcription of inducible NO synthase (iNOS) in hepatocytes, lipolysis, NO production and iNOS transcription rate in adipocytes. We directed our interest to combination of peroxisome proliferation activator receptor γ (PPARγ) agonist, antagonist and β3 adrenergic agonist in the culture of epididymal rat adipocytes in the first part of our work. While in the second part we investigated the influence of β and α adrenergic mimetics, adrenergic blockers in the culture of rat high glycogen content hepatocytes. Methods: NO production was detected under the active agents treatments by detection of NO oxidative products NO2 and NO3 in media. Glycogenolysis was measured as free glucose rise released by hepatocytes into the media. NOS transcription level was extrapolated after comparative polymerase chain reaction with reverse...
|
Page generated in 0.0349 seconds