• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 36
  • 28
  • 16
  • 15
  • 14
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the Two Isoforms of the Human Alkyl Adenine DNA Glycosylase (HAAG) Gene: A Comparative Study of its Isoforms, its Protein and its Resistance to DNA Damage Agents

Bonanno, Kenneth C 08 May 2000 (has links)
This study was conducted at the University of Massachusetts Medical Center in the Volkert laboratory. Human alkyl adenine DNA glycosylase (hAAG) is a DNA repair enzyme that repairs alkylated DNA bases. hAAG was cloned in 1991 and a second isoform was classified in 1994. The difference between the two isoforms of hAAG is an alternate spliced first exon. Both isoforms of the hAAG gene were present in the Volkert laboratory collection, however the second isoform (hAAG-2) was phenotypically different than the first and became the first focus of this study. Using the improperly functioning isoform as a template, and constructing a 5' primer with the identical upstream sequence as the functioning isoform (hAAG-1), a phenotypically similar gene was constructed by PCR. The new isoform (hAAG-2) was cloned into an expression vector and its activity as a DNA repair agent was studied. A second version of hAAG-2 was also constructed, incorporating a histidine tag for protein purification and identification purposes. Efforts included using the ability of hAAG to complement glycosylase deficient alkA tagA E. coli double mutant strains to assess and to compare the ability of the two isoforms of hAAG and to determine if the histidine tag affected function. The ability of hAAG to rescue cells from exposure to a variety of DNA damaging agents was studied by inducing each isoform and analyzing the sensitivity of the cells to increased doses of DNA damaging agents. Both hAAG-1 and hAAG-2 were able to restore the wild type resistance of the alkA and tag genes when exposed to the alkylating agents MNNG and MMS. In order to study the ability of hAAG to repair alkyl lesions larger than methyl groups, it was necessary to inactivate the uvrA dependent nucleotide excision repair gene. In E. coli, methyl lesions are repaired primarily by glycosylases, while nucleotide excision repairs bulky lesions. Thus, in order to detect hAAG activity on these types of damage, it was necessary to inactivate the bacterial uvrA gene. Each isoform of hAAG was transformed into a triple mutant strain deficient in alkA tagA and uvrA, then exposed to CNU, BCNU, and Mitomycin C. Each of these DNA damaging agent caused increased toxicity in the presence of hAAG. hAAG-1 expressed in the alkA tag double mutant strain was exposed to Mitomycin C and showed greater resistance than hAAG-1 expressed in the alkA tag uvrA triple mutant. In fact, in the nucleotide excision proficient strain, expression increased Mitomycin C resistance above that seen in the control, suggesting that glycosylase activity may function in a partnership with nucleotide excision repair and that the two isoforms of hAAG have subtle differences. An ompT protease knockout host strain was constructed using P1-transduction and used to examine protein products. hAAG-2 was inserted into the pBlueScript plasmid so that the gene could be regulated by the T7 promoter for use beyond the scope of this thesis. A protein synthesis time course assay was conducted to determine the expression levels of hAAG-1 and hAAG-2 when induced by IPTG. Immunoblot detection of the histidine tag was used to measure expression levels of each isoform.
2

Ugene, a Newly Identified Protein that is Commonly Over-Expressed in Cancer, and that Binds to Uracil DNA-Glycosylase

Guo, Chunguang January 2009 (has links)
No description available.
3

Fapy glycosylase and UvrABC excinuclease protect Escherichia coli from near-ultraviolet radiation

Shennan, Michael G.C. January 1995 (has links)
In contrast to the damage caused by far-UV, the damaging effects of UVA (320-400 nm) in living cells are not well understood. The damage caused by UVA irradiation is largely oxygen-dependent, suggesting UVA-mediated DNA damage involves reactive oxygen species produced through the action of an endogenous photosensitizer. Previous studies examining cellular responses to UVA irradiation in E. coli have been hindered by the fact that, at sublethal fluences, wild-type cells undergo a transient inhibition of cell growth termed a "growth delay". This effect is absent in nuvA⁻ strains, thereby facilitating the study of DNA repair factors required for the repair of UVA-mediated damage. Formamidopyrimidine (Fapy) glycosylase (encoded by fpg) and the UvrABC excinuclease are both capable of excising oxidatively damaged DNA bases. An fpg::kan mutation was placed into isogenic uvrA⁺ and uvrA⁻ strains of E. coli to evaluate the relative importance of these repair enzymes in the recovery from UVA-induced stress. In a nuvA⁻ background, the survival of fpg⁻ mutants exposed to UVA was significantly reduced relative to isogenic fpg⁺ control strains. This effect was enhanced in the absence of the UvrABC excinuclease, suggesting a role for both of these enzymes in repairing UVA-generated lesions. Survival of isogenic nuvA⁺ repair-deficient strains was significantly lower than nuvA⁻ strains, suggesting a role for the modified base 4-thiouridine in UVA-mediated lethality. An in vitro plasmid DNA irradiation assay in the presence and absence of 4-thiouridine was used to examine this possibility. When irradiated DNA was subsequently used to transform the fpg⁻ and uvrA⁻ mutant strains, no increase in DNA damage (as measured by a decrease in transformational efficiency) in the presence of 4-thiouridine was observed, suggesting that when present in solution this base does not play a photosensitizing role in UVA-mediated lethality. / Thesis / Master of Science (MSc)
4

Etude des ADN glycosylases de la superfamille structurale Fpg/Nei par modélisation moléculaire, de nouvelles cibles thérapeutiques potentielles dans les stratégies anti-cancer / Study of DNA glycosylases from Fpg/Nei structural superfamilly by molecular modeling, new potential therapeutic target for anti-cancer strategies

Rieux, Charlotte 20 December 2017 (has links)
L’ADN, support de l’information génétique, est constamment altéré par des agents physiques ou chimiques d’origines endogènes (métabolisme) et exogènes (UV, radiations ionisantes, produits chimiques) dont les effets sont génotoxiques. Ces modifications structurales délétères de l’ADN sont éliminées par de nombreux mécanismes de réparation. Parmi eux, le système de réparation par excision de bases (BER) est initié par les ADN glycosylases qui reconnaissent et éliminent les bases endommagées. Dans certaines stratégies anti-cancéreuses, l’utilisation de la chimiothérapie et la radiothérapie ont pour but la destruction des cellules cancéreuses en altérant leur ADN. Dans ce contexte, les ADN glycosylases réparent l’ADN des cellules traitées et induisent une résistance non désirée au traitement, faisant de ces enzymes des cibles thérapeutiques intéressantes. Le but de ces travaux est d’approfondir la compréhension des mécanismes de réparation des ADN glycosylases de la superfamille structurale Fpg/Nei grâce à la modélisation moléculaire et de pouvoir identifier et concevoir des inhibiteurs de ces enzymes. Les simulations de dynamique moléculaire (DM) nous ont permis d’étudier la « Lesion Capping Loop » (LCL) et de l’associer à la stabilisation de la base endommagée positionnée dans le site actif. Nous avons également étudié les chemins de sortie possibles de la base après coupure par l’enzyme et l’implication de la boucle LCL dans ce phénomène grâce à des simulations de DM ciblée (TMD-1). De plus, les simulations de DM couplées à un protocole d’amarrage moléculaire « aveugle » nous ont permis d’identifier 2 sites de fixations possibles majoritaires pour des petites molécules potentiellement inhibitrices. Un de ces sites correspondant au site actif de hNEIL1 a fait l’objet d’un criblage virtuel d’une partie de la base de molécules Ambinter. Ceci nous a permis d’identifier des molécules potentiellement inhibitrices dont les effets seront prochainement testés in vitro dans l’équipe sur la protéine humaine hNeil1. / The DNA, genetic information support, is frequently damaged by physical or chemical agents from endogenous (cell metabolism) and exogenous (UV, ionizing radiations, chemicals) factors whose effects are genotoxic. These deleterious DNA structural alterations are removed by many DNA repair mechanisms. Among them, the base excision repair (BER) is initiated by DNA glycosylases which recognize and remove damaged bases. In some anti-cancer strategies, the use of chemo- and radiotherapy is aimed to cancerous cells destruction by altering their DNA. In that specific context, DNA glycosylases repair the DNA of treated cells and induce unwanted resistance to treatments, making these enzymes interesting therapeutic targets. The purpose of this work is to deepen the repair mechanism knowledge of Fpg/Nei structural superfamily of DNA glycosylases using molecular modeling and designing inhibitors of these enzymes. Molecular dynamic simulations allowed us to study the « Lesion Capping Loop » (LCL) and to associate its role to substrate stabilization in the enzyme active site. We also studied some possible excision’s product release pathways and LCL implication in this phenomena by targeted molecular dynamic simulations (TMD-1). Furthermore, molecular dynamic simulations coupled to a blind molecular docking protocol allowed us to identify 2 possible main binding sites of potential inhibitiors. One of these binding sites corresponding to the hNEIL1 active site has been the object of a virtual screening of the Greenpharma database. This allowed us to identify potential inhibitors whom effects will be soon tested in vitro on the humain protein hNEIL1.
5

Structural Studies Of Mycobacterial Uracil-DNA Glycosylase (Ung) And Single-Stranded DNA Binding Protein (SSB)

Kaushal, Prem Singh 04 1900 (has links) (PDF)
For survival and successful propagation, every organism has to maintain the genomic integrity of the cell. The information content, in the form of nucleotide bases, is constantly threatened by endogenous agents and environmental pollutants. In particular, pathogenic mycobacteria are constantly exposed to DNA-damaging assaults such as reactive oxygen species (ROS) and reactive nitrogen intermediate (RNI), in their habitat which is inside host macrophage. In addition, the genome of Mycobacterium tuberculosis makes it more susceptible for guanine oxidation and cytosine deamination as it is G-C rich. Therefore DNA repair mechanisms are extremely important for the mycobacterium. An important enzyme involved in DNA repair is uracil-DNA glycosylase (Ung). To access the genomic information, during repair as well as DNA replication and recombination, dsDNA must unwind to form single stranded (ss) intermediates. ssDNA is more prone to chemical and nuclease attacks that can produce breaks or lesions and can also inappropriately self associate. In order to preserve ssDNA intermediates, cells have evolved a specialized class of ssDNA-binding proteins (SSB) that associate with ssDNA with high affinity. As part of a major programme on mycobacterial proteins in this laboratory, structural studies on mycobacterial uracil-DNA glycosylase (Ung) and single-stranded DNA binding protein (SSB) have been carried out. The structures were solved using the well-established techniques of protein X-ray crystallography. The hanging drop vapour diffusion and microbatch methods were used for crystallization in all cases. X-ray intensity data were collected on a MAR Research imaging plate mounted on a Rigaku RU200 X-ray generator. The data were processed using the HKL program suite. The structures were solved by the molecular replacement method using the program PHASER and AMoRe. Structure refinements were carried out using the programs CNS and REFMAC. Model building was carried out using COOT. PROCHECK, ALIGN, INSIGHT and NACCESS were used for structure validation and analysis of the refined structures. MD simulations were performed using the software package GROMACS v 3.3.1. Uracil-DNA glycosylase (UNG), a repair enzyme involved in the excision of uracil from DNA, from mycobacteria differs from UNGs from other sources, particularly in the sequence in the catalytically important loops. The structure of the enzyme from Mycobacterium tuberculosis (MtUng) in complex with a proteinaceous inhibitor (Ugi) has been determined by X-ray analysis of a crystal containing seven crystallographically independent copies of the complex. This structure provides the first geometric characterization of a mycobacterial UNG. A comparison of the structure with those of other UNG proteins of known structure shows that a central core region of the molecule is relatively invariant in structure and sequence, while the N- and C-terminal tails exhibit high variability. The tails are probably important in folding and stability. The mycobacterial enzyme exhibits differences in UNG-Ugi interactions compared with those involving UNG from other sources. The MtUng-DNA complex modelled on the basis of the known structure of the complex involving the human enzyme indicates a domain closure in the enzyme when binding to DNA. The binding involves a larger burial of surface area than is observed in binding by human UNG. The DNA-binding site of MtUng is characterized by the presence of a higher proportion of arginyl residues than is found in the binding site of any other UNG of known structure. In addition to the electrostatic effects produced by the arginyl residues, the hydrogen bonds in which they are involved compensate for the loss of some interactions arising from changes in amino-acid residues, particularly in the catalytic loops. The results arising from the present investigation represent unique features of the structure and interaction of mycobacterial Ungs. To gain further insights, the structure of Mycobacterium tuberculosis Ung (MtUng) in its free form was also determined. Comparison with appropriate structures indicate that the two domain enzyme slightly closes up when binding to DNA while it slightly opens up when binding to its proteinaceous inhibitor Ugi. The structural changes on complexation in the catalytic loops reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino acid residues in the catalytic loops. The uracil binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil in addition to providing insights into other possible interactions that inhibitors could be involved in. SSB is an essential accessory protein required during DNA replication, repair and recombination, and various other DNA transactions. Eubacteral single stranded DNA binding (SSB) proteins constitute an extensively studied family of proteins. The variability in the quaternary association in these tetrameric proteins was first demonstrated through the X-ray analysis of the crystal structure of Mycobacterium tuberculosis SSB (MtSSB) and Mycobacterium smegmatis (MsSSB) in this laboratory. Subsequent studies on these proteins elsewhere have further explored this variability, but attention was solely concentrated on the variability in the relative orientation of the two dimers that constitute the tetramer. Furthermore, the effect of this variability on the properties of the tetrameric molecule was not adequately addressed. In order to further explore this variability and strengthen structural information on mycobacterial SSBs in particular, and on SSB proteins in general, the crystal structures of two forms of Mycobacterium leprae single stranded DNA-binding protein (MlSSB) has been determined. Comparison of the structures with other eubacterial SSB structures indicates considerable variation in their quaternary association although the DNA binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but it appears to correlate well with variation in protein stability. Molecular dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype E. coli SSB and the individual subunits of both the proteins. The X-ray studies and molecular dynamics simulations together yield information on the relatively rigid and flexible regions of the molecule and the effect of oligomerization on flexibility. The simulations provide insights into the changes in the subunit structure on oligomerization. They also provide insights into the stability and time evolution of the hydrogen bonds/water-bridges that connect two pairs of monomers in the tetramer. In continuation of our effort to understand structure-function relationships of mycobacterial SSBs, the structure of MsSSB complexed with a 31-mer polydeoxy-cytidine single stranded DNA (ssDNA) was determined. The mode of ssDNA binding in the MsSSB is different from the modes in the known structures of similar complexes of the proteins from E. coli (EcSSB) and Helicobacter pylori (HpSSB). The modes in the EcSSB and HpSSB also exhibit considerable differences between them. A comparison of the three structures reveals the promiscuity of DNA-binding to SSBs from different species in terms of symmetry and the path followed by the bound DNA chain. It also reveals commonalities within the diversity. The regions of the protein molecule involved in DNA-binding and the nature of the residues which interact with the DNA, exhibit substantial similarities. The regions which exhibit similarities are on the central core of the subunit which is unaffected by tetramerisation. The variable features of DNA binding are associated with the periphery of the subunit, which is involved in oligomerization. Thus, there is some correlation between variability in DNA-binding and the known variability in tetrameric association in SSBs. In addition to the work on Ung and SSB, the author was involved in X-ray studies on crystals of horse methemoglobin at different levels of hydration, which is described in the Appendix of the thesis. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h.79% the molecule appears to move towards the R2 state. The crystal structure at r.h.66% is similar, but not identical, to that at r.h.75%. Thus variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action. A part of the work presented in the thesis has been reported in the following publications. 1. Singh, P., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2006). Overexpression, purification, crystallization and preliminary X-ray analysis of uracil N-glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor. Acta Crystallogr. F62, 1231-1234. 2. Kaushal, P.S., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2008). Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources. Acta Crystallogr. D64, 551-560. 3. Kaushal, P.S., Sankaranarayanan, R. & Vijayan, M. (2008). Water-mediated variability in the structure of relaxed-state haemoglobin. Acta Crystallogr. F64, 463-469.
6

Nouvelles voies de réparation des lésions complexes dans l’ADN. Applications aux mécanismes de résistance aux thérapeutiques anticancéreuses. / New Alternative Repair Pathways for Complex DNA Damage. Applications to the Mechanisms of Resistance to Anticancer Therapies.

Zutterling, Caroline 18 December 2018 (has links)
Les facteurs endogènes et exogènes induisent diverses modifications chimiques et structurales dans l’ADN cellulaire et sont à l’origine de nombreuses erreurs lors de la réplication et de la division cellulaire. Elles sont souvent à l’origine de cancers et de maladies chroniques liées à l’âge. Les agents alkylants induisent des lésions complexes de l’ADN. Ils sont utilisés comme des outils efficaces dans les traitements par chimiothérapies. Les deux caractéristiques majeures des lésions complexes de l’ADN sont d’une part l’encombrement et d’autre part la présence de plus d’une modification dans un tour d’hélice. Les données biochimiques et génétiques montrent que l’élimination des dommages complexes de l’ADN nécessitent plusieurs voies de réparation distinctes. Les caractéristiques cliniques des maladies héréditaires caractérisées par des désordres de réparation de l’ADN, comme l’anémie de Fanconi et le syndrome de Cockayne, visent la nature complexe des lésions oxydatives endogène incluant les adduits encombrants et les pontages interbrins (PIBs). D’autre part, les effets biologiques sévères des agents ionisants, des traitements de chimiothérapie et des cancérigènes environnementaux sont impliqués dans la formation de cassures double brins, des PIBs et des adduits encombrants. Bien que ces derniers représentent une faible proportion des dommages de l’ADN induit par stress oxydatif et les agents chimiques dans les cellules, ils sont extrêmement cytotoxiques s’ils ne sont pas réparés. Par exemple, les cellules cancéreuses sont très sensibles aux PIBs et aux cassures double brins. Alors que la consommation de produits contenant de l’acide aristolochique (AA), qui génère des adduits encombrants dans l’ADN cellulaire, peut être à l’origine de neuropathies et a été associé à une cancérogénèse plus élevée que la fumée de cigarette. L’objectif majeur de ce projet est l’étude de la réparation des lésions complexes de l’ADN et leur implication dans le développement des cancers et leur thérapie. Dans cette présente étude, nous nous sommes intéressés aux mécanismes moléculaires de la réparation des PIBs et des adduits encombrants de l’ADN et leurs possibles rôles dans la chimio- et radiorésistance acquise. De plus, nous avons étudié le mécanisme moléculaire impliqué dans la mutagénèse induite par la réparation aberrante des adduits encombrants initiée par des ADN glycosylases de la voie BER dans des cellules bactériennes et de mammifères. Durant les trois années de thèse, (i) j’ai construit et caractérisé différents substrats d’ADN contenant diverses bases oxydées, des PIBs induits par le psoralène, des adduits encombrants aristolactame et des photoproduits issus des UV, (ii) j’ai purifié divers ADN glycosylases recombinantes (TDG, MBD4, NEIL1 et NEIL3), (iii) j’ai reconstruit in vitro la réparation des lésions de l’ADN et (iv) j’ai également étudié les interactions protéine-protéine et les modifications post-traductionnelles des protéines impliquées dans la réparation des PIBs générés par le cisplatine initiée par les ADN glycosylases NEIL1 et NEIL3. En combinant les différentes approches développées dans notre laboratoire, nous avons identifié et caractérisé des voies de réparation alternatives impliquées dans l’élimination des dommages complexes de l’ADN. Les résultats obtenus dans ce travail permettraient de comprendre la mécanistique du développement de certains cancers et à identifier les facteurs associés à la chimio- radiorésistance des cellules cancéreuses et par conséquent contribuer au développement de nouvelles préventions de stratégies thérapeutiques. / Endogenous and exogenous mutagenic factors induce variety of chemical and structural modifications in cellular DNA that are at the origin of errors that occur during DNA replication and cell division and often give rise to cancer and other age-related chronic diseases. Importantly, alkylating agents which induce complex DNA lesions are used as a powerful tool for anti-cancer chemotherapy. Two most important features of complex DNA lesions are their bulky character and presence of more than one modification within one turn of DNA helix. Genetic and biochemical data indicate that the elimination of complex DNA lesions requires several distinct DNA repair pathways. The clinical features of inherited human DNA repair deficient disorders such as Fanconi anemia and Cockayne syndrome point to complex nature of endogenous oxidative DNA damage which include bulky adducts and inter-strand DNA crosslinks (ICLs). On the other hand, severe biological effects of ionizing radiation, anticancer drugs and environmental carcinogens are correlated with formation of dirty DNA strand breaks, ICLs and bulky adducts. Although complex lesions typically constitute relatively small fraction of the total DNA damage induced by oxidative stress and drugs in cells, they are extremely cytotoxic if not repaired. For example, cancer cells are primarily very sensitive to ICLs and dirty DNA strand breaks. While, consumption of products containing aristolochic acid (AA), which generates bulky adenine DNA adducts in cellular DNA, can cause neuropathy and has been associated with higher risk of cancer than cigarette smoking. The major objective of the present project is to study the repair of complex DNA lesions and their implications in cancer development and therapy. Here, we investigated molecular mechanisms of the repair of ICLs and bulky DNA lesions and their possible role in the acquired chemo-resistance of cancer cells. In addition, we studied the molecular mechanism of mutagenesis induced by the aberrant DNA glycosylase-mediated BER towards bulky adducts in bacterial and mammalian cells. During three years of the project, I have (i) constructed and characterized DNA substrates containing various oxidized bases, psoralen-derived ICLs, bulky aristolactam-adenine adducts and UV photoproducts; (ii) purified several recombinant human DNA glycosylases (TDG, MBD4. NEIL1 and NEIL3); (iii) reconstituted in vitro the repair of complex DNA lesions; and finally (iv) studied the protein-protein interactions and post-translational protein modifications involved in the DNA glycosylases NEIL1 and NEIL3 initiated repair of cis-platinum induced ICLs. By combining the approaches developed in our laboratories we have identified and characterized alternative DNA repair pathways involved in the cellular processing of complex DNA damage. The results obtained in present work can provide mechanistic understanding of the development of certain cancer and lead to identification of the factors associated with the acquired chemo- and radio-resistance of tumour cells and therefore would contribute to development of new prevention and therapeutic strategies.
7

Targteing uracil exclusion mechanisms for development of anti-viral and anti-cancer therapies

Studebaker, Adam Wade 17 October 2003 (has links)
No description available.
8

Dna Glycosylases Remove Oxidized Base Damages From G-Quadruplex Dna Structures

Zhou, Jia 01 January 2015 (has links)
The G-quadruplex DNA is a four-stranded DNA structure that is highly susceptible to oxidation due to its G-rich sequence and its structure. Oxidative DNA base damages can be mutagenic or lethal to cells if they are left unrepaired. The base excision repair (BER) pathway is the predominant pathway for repair of oxidized DNA bases. DNA glycosylases are the first enzymes in BER and are responsible for removing base lesions from DNA. How DNA glycosylases remove base lesions from duplex and single-stranded DNA has been intensively studied, while how they act on G-quadruplex DNA remains to be explored. In Chapter II of this dissertation, we studied the glycosylase activity of the five mammalian DNA glycosylases (OGG1, NTH1, NEIL1, NEIL2 and mouse Neil3) on G-quadruplex DNA formed by telomere sequences that contain a single base lesion. We found that telomeric sequences that contain thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) or spiroiminodihydantoin (Sp) all formed the basket form of an antiparallel G-quadruplex DNA structure in Na+ solution. We also showed that no glycosylase was able to remove 8-oxoG from quadruplex DNA, while its further oxidation products, Sp and Gh, were good substrates for mNeil3 and NEIL1 in quadruplex DNA. In addition, mNeil3 is the only enzyme that removes Tg from quadruplex DNA and the glycosylase strongly prefers Tg in the telomere sequence context in both single-stranded and double-stranded DNA. In Chapter III, we extended our study to telomeric G-quadruplex DNA in K+ solution and we also studied quadruplex DNA formed by promoter sequences. We found that 8-oxoG, Gh and Sp reduce the thermostability and alter the folding of telomeric quadruplex DNA in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases are able to remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplex DNA in K+ solution. Interestingly, NEIL1 or NEIL3 do not efficiently remove hydantoin lesions at the site that is most prone to oxidation in quadruplex DNA. However, hydantoin lesions at the same site in quadruplex DNA are removed much more rapidly by NEIL1, NEIL2 and NEIL3, when an extra telomere TTAGGG repeat is added to the commonly studied four-repeat quadruplex DNA to make it a five-repeat telomere quadruplex DNA. We also show that APE1 cleaves furan in selected positions in Na+-coordinated telomeric quadruplex DNA structures. We use promoter sequences of the VEGF and c-MYC genes as models to study promoter G-quadruplex DNA structures, and show that the NEIL glycosylases primarily remove Gh from Na+-coordinated antiparallel quadruplex DNA but not from K+-coordinated parallel quadruplex DNA containing VEGF or c-MYC promoter sequences. Taken together, our data show that the NEIL DNA glycosylases may be involved in both telomere maintenance and gene regulation.
9

Contribution au projet de génomique structurale du virus d'Epstein-Barr : l'Uracile-ADN Glycosylase et les enzymes du métabolisme des acides nucléiques

Geoui, Thibault 18 December 2006 (has links) (PDF)
Le virus d'Epstein-Barr (EBV) est un γ -herpesvirus humain. Il est responsable de maladies telles que la mononucléose-infectieuse et il est associé à de nombreux<br />carcinomes et syndromes immunoprolifératifs. A la différence d'autres herpesvirus tel que herpes-simplex, il n'existe actuellement aucun médicament efficace contre EBV. Le génome d'EBV contient 86 cadres de lecture soit autant de cibles potentielles pour une approche de génomique structurale, permettant le développement rationnel de nouvelles thérapies. La première série de cibles sur laquelle nous avons travaillé code pour 23 protéines. De façon inattendue, le principal problème rencontré lors de ce projet fut la faible expression ainsi que l'insolubilité d'une grande partie des cibles.<br />Parmi les 8 protéines solubles, 5 furent cristallisées à l'issue de quoi, 4 structures furent résolues. La clef de la réussite de ce projet fut un traitement individuel de chaque cible plutôt que l'utilisation de protocoles standards. La partie centrale de ce travail porte sur l'Uracile-ADN Glycosylase (UNG). C'est une enzyme de réparation de l'ADN. Il nous fut impossible d'obtenir des cristaux de la protéine seule, mais, grâce à la formation d'un complexe avec une protéine inhibitrice produite par le phage PBS-2, nous obtînmes des cristaux diffractant à 2.3 Å. La structure de ce complexe nous permis l'expliquer l'organisation de la « boucle leucine », un domaine du site actif, qui comporte une insertion de 7 résidus chez tous les γ-herpesvirus. Malgré cette différence, les constantes catalytiques de l'UNG d'EBV sont proches de celles des autres UNGs ce qui suggère un mécanisme similaire d'interaction avec l'ADN. Le travail sur d'autres cibles et les difficultés qui leur sont <br />inhérentes est également abordé (notamment l'Alkaline Exonucléase).
10

The Ubiquitin Ligase \(CRL4^{Cdt2}\) Targets Thymine DNA Glycosylase for Destruction during DNA Replication and Repair

Slenn, Tamara Jeannine 07 June 2014 (has links)
The E3 ubiquitin ligase \(CRL4^{Cdt2}\) targets proteins for destruction during DNA replication and following DNA damage (Havens and Walter, 2011). Its substrates contain "PIP degrons" that mediate substrate binding to the processivity factor PCNA at replication forks and damage sites. The resulting PCNA-PIP degron complex forms a docking site for \(CRL4^{Cdt2}\), which ubiquitylates the substrate on chromatin. Several \(CRL4^{Cdt2}\) substrates are known, including Cdt1, multiple CDK inhibitors, Drosophila E2f1, human Set8, S. pombe Spd1, and C. elegans \(Pol\eta\) (Havens and Walter, 2011). An emerging theme is that \(CRL4^{Cdt2}\) targets proteins whose presence in S phase is toxic. Here, I used Xenopus egg extract to characterize a new \(CRL4^{Cdt2}\) substrate, thymine DNA glycosylase (TDG). TDG is a base excision repair protein that targets G-U and G-T mispairs, which arise from cytosine and 5-methylcytosine deamination (Cortazar et al., 2007). Thus, TDG may function in epigenetic gene regulation via DNA demethylation, in addition to its canonical DNA repair function. A yet unknown E3 ubiquitin ligase triggers TDG destruction during S phase (Hardeland et al., 2007). Understanding TDG proteolysis in S phase is relevant to the regulation of DNA replication, DNA repair, and epigenetic control of gene expression. I discovered that TDG contains a variant of the "PIP degron" consensus and that TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and degron-specific manner during DNA repair and DNA replication in Xenopus egg extract. I further characterized what features of TDG contribute to its proteolysis. Interestingly, I could not identify any defects during DNA replication or during Xenopus embryonic development in response to a non-degradable form of TDG. Additionally, I examined how interactions between \(CRL4^{Cdt2}\) and multiple subunits of the PCNA homotrimer contribute to \(CRL4^{Cdt2}\) function. In a popular model, PCNA functions as a "tool belt" on DNA, binding three separate proteins through its individual subunits to facilitate rapid exchange of DNA replication and repair proteins as they are needed on DNA. To address this model, I generated a single chain polypeptide with three PCNA subunits connected through flexible linker sequences. I used this tool to determine how multiple PCNA subunits contribute to \(CRL4^{Cdt2}\) function. I found that a single wildtype subunit is sufficient for modest destruction of the \(CRL4^{Cdt2}\) substrate Cdt1, but complete Cdt1 destruction requires two separate wildtype subunits. Additionally, a single subunit was sufficient for leading strand elongation, challenging the "tool belt" model during DNA replication. I also discuss implications and future use of the single-chain PCNA.

Page generated in 0.6439 seconds