• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 36
  • 28
  • 16
  • 15
  • 14
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-Vaï 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par β,δ-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques. Mots clés : Réparation de l'ADN; Réparation par excision de base; Formamidopyrimidine-ADN glycosylase; 2,6- diamino-4-hydroxy-5-formamidopyrimidine; 7,8-dihydro-8-oxo-guanine; 5-hydroxy-5-méthyle-hydantoïne.
32

Physiological Importance Of DNA Repair In Mycobacteria

Kurthkoti, Krishna 03 1900 (has links) (PDF)
No description available.
33

Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-VaÏ 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par ß,d-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques.
34

DNA Repair Proteins in Mycobacteria and their Physiological Importance

Sang, Pau Biak January 2014 (has links) (PDF)
DNA repair proteins in mycobacteria and their physiological importance Mycobacterium tuberculosis, the causative organism of tuberculosis, resides in the host macrophages where it is subjected to a plethora of stresses like reactive oxygen species (ROS) and reactive nitrogen intermediate(RNI) which are generated as a part of the host’s primary immune response. These stresses can damage the cellular components of the pathogen including DNA and its precursors. Two common damages to DNA and its precursors caused by ROS and RNI are oxidation of guanine to 8-oxo-guanine and deamination of cytosine to uracil. Mycobacteria, which are known to have high G+C content, must be more susceptible to such damages, and are thus equipped with the mechanisms to counteract these damages. One such mechanism is to hydrolyse the 8-oxo-dGTP into 8-oxo-dGMP to avoid its incorporation in the DNA during its synthesis. This job is done by a protein called MutT.In mycobacteria four homologs of MutT, namely MutT1, MutT2, MutT3 and MutT4 have been annotated. The second mechanism deals with the repair of uracil residues present in DNA which are generated by deamination of cytosines or incorporation of dUTP during DNA synthesis. This is taken care of by a protein called uracil DNA glycosylase (UDG) which excises uracil by cleaving the N-C1’ glycosidic bond between the uracil and the deoxyribose sugar in a DNA repair pathway called the base excision repair (BER). In this study, the biochemical properties and physiological role of mycobacterial MutT2 and, MSMEG_0265 (MsmUdgX), a novel uracil DNA glycosylase superfamily protein, have been investigated. I.Biochemical characterization of MutT2 from mycobacteria and its antimutator role. Nucleotide pool, the substrate for DNA synthesis is one of the targets of ROS which is generated in the macrophage upon Mycobacterium tuberculosis infection. Thus, the pathogen is at increased risk of accumulating oxidised guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP. By hydrolysing the damaged guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role inallowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we have purified recombinantM. tuberculosisMutT2 (MtuMutT2) andM. smegmatisMutT2 (MsmMutT2) proteins as representative of slow and fast growing mycobacteria, for the purpose of biochemical characterization. UnlikeEscherichia coliMutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (KmandVmax) revealed thatwhileMtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP,MsmMutT2 hydrolyzes them almost equally well. Also,MsmMutT2 is about 14 times more efficient thanMtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP.Consistent with these observations,MsmMutT2 but notMtuMutT2 rescuesE. colifor MutT deficiency by decreasing both themutation frequency and A to C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins. II.Understanding the biochemical properties of MSMEG_0265 (MsmUdgX), a novel uracil DNA glycosylase superfamily protein Uracil DNA glycosylases (UDGs) are base excision repair enzymes which excise uracil from DNA by cleaving the N-glycosidic bond. UDGs are classified into 6 different families based on their two functional motifs, i. e.,motif A and motif B. In mycobacteria, there are two uracil DNA glycosylases, Ung and UdgB which belong to Family 1 and Family 5, respectively. In this study, based on the presence of the two functional motifs, we have discovered yet another uracil DNA glycosylase in M. smegmatis, which we have called MsmUdgX.The motif A and motif B of this protein indicate that it does not belong to any of the UDG families already classified but has highest similarity with Family 4 UDGs. Homologs of this protein are also present in several other organisms like M. avium, Streptomyces ceolicolor, Rhodococcus etc., but absent in M. tuberculosis, archaea and eukaryotes. Activity assays of this protein show that unlike other UDGs, MsmUdgX does not excise uracil, but forms a tight complex with uracil containing single stranded (ss) and double stranded (ds) DNAs, as observed by a shifted band in 8M urea-PAGE as well as SDS-PAGE. It also does not recognize other modified nucleotides that we investigated, in DNA. The protein binds to uracil-DNA in a wide range of pH and the minimum substrate required for its binding is pNUNN. Like Family 4 UDG, the protein has Fe-S cluster but it is not as thermostable as the Family 4 UDGs. Addition of different metal ions does not affect its binding property, and even the presence of M. smegmatis cell free extract does not diminish its binding activity. Since this protein binds specifically to uracil in DNA, an application of the protein for detection of uracil in the genomic DNA is proposed. III. Elucidation of the role of KRRIH loop in MsmUdgX by mutational analysis MsmUdgX is a novel uracil DNA glycosylase superfamily protein which has the highest homology to Family 4 UDGs. However, alignment of MsmUdgX amino acid sequence with that of Family 4 UDGs shows that there is an extra stretch of amino acids which is unique to this group of proteins. This stretch, defined by AGGKRRIH is absent in all Family 4 UDGs and the region KRRIH of the strtch is quite conserved amongst all UdgX proteins. Homology modelling of MsmUdgX, using a Family 4 UDG (TthUdgA) shows that this extra stretch of amino acids forms an outloop near the enzyme active site. Another unique difference between MsmUdgX and Family 4 UDGs is in the motif A where MsmUdgX has GEQPG and the Family 4 UDGs haveGE(A/G)PG. Our work on MsmUdgX has shown that, unlike other UDGs, this protein does not excise uracils, but forms a tight complex with the uracil containing DNA. This unique tight uracil binding property as well as KRRIH amino acid stretch has not been observed for any uracil DNA glycosylase superfamily proteins. So, to gain insight into the role of KRRIH and glutamine (Q) of motif A in MsmUdgX family of proteins, site directed mutagenesis was done in this region and we observed that mutation of His109 of the KRRIH loop to serine (S) leads to a gain of uracil excision activity, whereas changing the R107 to S, ‘RRIH’ to ‘SSAS’ or deleting the loop altogether leads to loss of its complex formation activity. Further, mutation of H109 to other amino acids like G, Q and A also shows uracil excision activity. Mutation of the glutamine in the motif A to alanine so that it is exactly similar to that of Family 4 UDGs, does not affect its uracil binding activity. This observation indicates that the KRRIH loop has an important role in the tight binding and/or uracil excision activity of MsmUdgX. Crystal structure of MsmUdgX in complex with uracil-DNA oligo and MsmUdgX H109S mutants are being studied.IV. Physiological importance of MsmUdgX in M. smegmatis MsmUdgX is a uracil DNA glycosylase superfamily protein which binds tightly to uracil (in DNA) without excising it. To elucidate its role in M. smegmatis, knockout of udgX was generated. Growth comparison of the wild type and the ΔudgX strains does not show any growth differences under the conditions tested. However, overexpression of MsmUdgX in recA deficient strains of E. coli as well as M. smegmatis leads to their retarded growth. Retarded grown is also observed in strains deficient in other DNA repair proteins that work in conjunction with RecA. These observations indicate that repair/release of MsmUdgX-uracil DNA complex might be a RecA dependent process.
35

Identifizierung und Charakterisierung von thermostabilen Uracil Glykosylasen von Archaeon Methanobacterium thermoautotrophicum und Bakterium Thermus thermophilus / Identification and characterization of thermostable uracil glycosylases from the archaeon Methanobacterium thermoautotrophicum and the bacterium Thermus thermophilus

Starkuviene, Vytaute 30 October 2001 (has links)
No description available.
36

Identifizierung und Charakterisierung von thermostabilen Uracil Glykosylasen von Archaeon Methanobacterium thermoautotrophicum und Bakterium Thermus thermophilus / Identification and characterization of thermostable uracil glycosylases from the archaeon Methanobacterium thermoautotrophicum and the bacterium Thermus thermophilus

Starkuviene, Vytaute 30 October 2001 (has links)
No description available.
37

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
38

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
39

Multi-disciplinary Investigation of the Kinetics and Protein Conformational Dynamics of DNA Replication and Oxidative DNA Damage Bypass and Repair

Maxwell, Brian Andrew 17 October 2014 (has links)
No description available.
40

Structural analysis of the potential therapeutic targets from specific genes in Methicillin-resistant Staphylococcus aureus (MRSA)

Yan, Xuan January 2011 (has links)
The thesis describes over-expression, purification and crystallization of three proteins from Staphylococcus aureus (S. aureus). S. aureus is an important human pathogen and methicillin-resistant S. aureus (MRSA) is a serious problem in hospitals nowadays. The crystal structure of 3-Methyladenine DNA glycosylase I (TAG) was determined by single-wavelength anomalous diffraction (SAD) method. TAG is responsible for DNA repair and is an essential gene for both MRSA and methicilin-susceptible S. aureus (MSSA). The structure was also determined in complex with 3-methyladenine (3-MeA) and was solved using molecular replacement (MR) method. An assay was carried out and the molecular basis of discrimination between 3-MeA and adenosine was determined. The native crystal structure of fructose 1-phosphate kinase (PFK) from S. aureus was determined to 2.30 Å and solved using molecular replacement method. PFK is an essential enzyme involved in the central metabolism of MRSA. Despite extensive efforts no co-complex was determined, although crystals were obtained they diffracted poorly. An assay which can be used to test for inhibitors has been developed. Mevalonate Kinase (MK) is another essential enzyme in MRSA and is a key drug target in the mevalonate pathway. Native data diffracting to 2.2 Å was collected. The structure was solved using multiple isomorphorus replacement (MIR) method. A citrate molecule was bound at the MK active site, arising from the crystallization condition. The citrate molecule indicates how substrate might bind. The protein was kinetically characterized. A thermodynamic analysis using fluorescence-based method was carried out on each protein to investigate binding interactions of potential fragments and thus a drug design starting point.

Page generated in 0.0318 seconds