• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evidence for the Interaction of GTP with Rat Liver Glyoxalase II

Yuan, Win-Jae 12 1900 (has links)
Glyoxalase 11, the second enzyme of the glyoxalase system, hydrolyzes S-D-lactoylglutathione (SLG) to regenerate glutathione (GSH) and liberate free D-lactate. It was found that GTP binds with Gil from rat liver and inhibits Gil activity. Preincubation experiments showed that the binding is relatively tight, since more than 15 minutes are required to release GTP from the complex following dilution. Inhibition kinetics studies indicate that GTP is a "partially competitive inhibitor"; Thus, it would appear that the binding sites for substrate (SLG) and inhibitor (GTP) are different, but spatially close. Glyoxalase 11 binds to a GTP affinity medium, and with polyacrylamide gel electrophoresis, Gil has a higher relative mobility when GTP is present (ATP has no effect). The functional consequences of GTP binding with a specific site on Gil are still unclear. It is speculated that Gil may interact with tubulin by serving as a dissociable GTP carrier, delivering GTP to the tubulinGTP binding site, and thus facilitating tubulin polymerization.
2

Nucleotide Inhibition of Glyoxalase II

Gillis, Glen S 05 1900 (has links)
The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" enzyme (Glo-II-i) show that a significant reduction of the affinity of the enzyme for the substrate, SLG, occurs and further suggest that only one form of the enzyme is kinetically distinguishable after "de-sensitization". Tryptophan fluorescence studies of the two enzyme preparations suggest that a subtle conformational change in the enzyme has occurred during de-sensitization. We have also observed that Glo-II-i is "resensitized" to nucleotide inhibition after incubation in the presence of a reagent that reduces disulfide bonds. The resensitized enzyme exhibits an increased KM value similar to that of the original Glo-II-s. Kinetics studies show that ATP or GTP again act as partial non-competitive inhibitors of the resensitized enzyme and suggest that only one form of the enzyme is present. The physiological significance of the two enzyme forms is discussed.
3

DETERMINATION OF THE AMINO TERMINUS OF MITOCHONDRIAL GLYOXALASE II ISOZYMES USING A PROTEOMIC APPROACH

Nimako, George K. 12 December 2003 (has links)
No description available.
4

OVER-EXPRESSION AND CHARACTERIZATION OF A MITOCHONDRIAL GLYOXALASE II FROM ARABIDOPSIS THALIANA

Marasinghe, Gishanthi P K 30 September 2004 (has links)
No description available.

Page generated in 0.0353 seconds