Spelling suggestions: "subject:"glyoxal I""
1 |
A Characterization of Liver Glyoxalase I From Normal Mice and Mice Bearing LymphosarcomaStrzinek, Robert Alfred 08 1900 (has links)
The purpose of this investigation was (1) to isolate and purify glyoxalase I from the livers of normal DBA/lJ mice and the livers from mice bearing a lymphosarcoma tumor; and (2) to determine, at least with respect to glyoxalase I, if the tumor has an effect on the chemical properties or structure of macromolecules in an organ removed from tumor locale and not histologically affected by its presence.
|
2 |
Synthesis and Study of Glutaryl-S-(ω-aminoalkyl)-L-cysteinylglycines as Inhibitors of Glyoxalase IPhillips, Gerald Wayne 05 1900 (has links)
This thesis describes the synthesis and preliminary enzymatic study of glutaryl-S-(8-aminooctyl)-L-cysteinylglycine and glutaryl-S-(10-aminodecyl)-L-cysteinylglycine as inhibitors of glyoxalase I. These analogs of glutathione were prepared as potential ligands for affinity chromatography purification of glyoxalase I. The compounds were synthesized by a seven-step procedure in overall yields of 24% for the octyl analog and 33% for the decyl analog. Both compounds exhibited mixed type inhibition of the enzyme, with the decyl derivative being more inhibitory than the octyl derivative. The inhibition was nonlinear (parabolic) for both compounds. Although less inhibitory than the corresponding S-substituted glutathione derivatives, these analogs are promising candidates for affinity chromatography ligands. Such compounds may also be useful in studying the mechanism of glyoxalase I.
|
3 |
Nucleotide Inhibition of Glyoxalase IIGillis, Glen S 05 1900 (has links)
The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH.
We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist.
The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" enzyme (Glo-II-i) show that a significant reduction of the affinity of the enzyme for the substrate, SLG, occurs and further suggest that only one form of the enzyme is kinetically distinguishable after "de-sensitization". Tryptophan fluorescence studies of the two enzyme preparations suggest that a subtle conformational change in the enzyme has occurred during de-sensitization.
We have also observed that Glo-II-i is "resensitized" to nucleotide inhibition after incubation in the presence of a reagent that reduces disulfide bonds. The resensitized enzyme exhibits an increased KM value similar to that of the original Glo-II-s. Kinetics studies show that ATP or GTP again act as partial non-competitive inhibitors of the resensitized enzyme and suggest that only one form of the enzyme is present. The physiological significance of the two enzyme forms is discussed.
|
4 |
Glyoxalase-I Is Upregulated in Acute Cerulein-Induced Pancreatitis: A New Mechanism in Pancreatic Inflammation?Hollenbach, Marcus, Sonnenberg, Sebastian, Sommerer, Ines, Lorenz, Jana, Hoffmeister, Albrecht 24 April 2023 (has links)
Inflammation caused by oxidative stress (ROS) demonstrates an essential mechanism in the pathogenesis of acute pancreatitis (AP). Important sources for ROS comprise the reactive compound methylglyoxal (MGO) itself and the MGO-derived formation of advanced glycation end-products (AGEs). AGEs bind to the transmembrane receptor RAGE and activate NF-κB, and lead to the production of pro-inflammatory cytokines. MGO is detoxified by glyoxalase-I (Glo-I). The importance of Glo-I was shown in different models of inflammation and carcinogenesis. Nevertheless, the role of Glo-I and MGO in AP has not been evaluated so far. This study analyzed Glo-I in cerulein-(CN)-induced AP and determined the effects of Glo-I knockdown, overexpression and pharmacological modulation. Methods: AP was induced in C57BL6/J mice by i.p. injection of CN. Glo-I was analyzed in explanted pancreata by Western Blot, qRT-PCR and immunohistochemistry. AR42J cells were differentiated by dexamethasone and stimulated with 100 nM of CN. Cells were simultaneously treated with ethyl pyruvate (EP) or S-p-bromobenzylglutathione-cyclopentyl-diester (BrBz), two Glo-I modulators. Knockdown and overexpression of Glo-I was achieved by transient transfection with Glo-I siRNA and pEGFP-N1-Glo-I-Vector. Amylase secretion, TNF-α production (ELISA) and expression of Glo-I, RAGE and NF-κB were measured. Results: Glo-I was significantly upregulated on protein and mRNA levels in CN-treated mice and AR42J cells. Dexamethasone-induced differentiation of AR42J cells increased the expression of Glo-I and RAGE. Treatment of AR42J cells with CN and EP or BrBz resulted in a significant reduction of CN-induced amylase secretion, NF-κB, RAGE and TNF-α. Overexpression of Glo-I led to a significant reduction of CN-induced amylase levels, NF-κB expression and TNF-α, whereas Glo-I knockdown revealed only slight alterations. Measurements of specific Glo-I activity and MGO levels indicated a complex regulation in the model of CN-induced AP. Conclusion: Glo-I is overexpressed in a model of CN-induced AP. Pharmacological modulation and overexpression of Glo-I reduced amylase secretion and the release of pro-inflammatory cytokines in AP in vitro. Targeting Glo-I in AP seems to be an interesting approach for future in vivo studies of AP.
|
5 |
Explorative Untersuchungen zur Bedeutung der Glyoxalase-I im Modell der Cerulein-induzierten akuten PankreatitisSonnenberg, Sebastian Alexander 20 September 2024 (has links)
Bestandteil dieser Arbeit sind zwei Publikationen, welche sich mit einer möglichen Bedeutung der Glyoxalase-I (GLO-I) bei der akuten Pankreatitis (AP) auseinander-setzen. Die erste Publikation „Pitfalls in AR42J - model of cerulein-induced acute pancreatitis“ befasst sich mit der Gestalt eines in-vitro Modells der durch Cerulein (CN) induzierten akuten Pankreatitis. Darauf aufbauend setzt sich die zweite Publi-kation „Glyoxalase-I is upregulated in acute cerulein-induced pancreatitis: A new mechanism in pancreatic inflammation?“ mit der Fragestellung zur Rolle der GLO-I bei der CN-induzierten AP als Modell der AP auseinander.
Als Basis zur fachlichen Einordnung der in dieser Arbeit inkludierten Publikationen wird zu Beginn ein fokussierter Überblick über das Pankreas und die AP gegeben. Es folgt eine Darstellung des Modells der CN-induzierten AP als Modell der AP. Da-rauf aufbauend werden inflammatorische Zusammenhänge im Modell betrachtet, welche die explorative Forschung zur GLO-I begründen.
|
6 |
Using biochemical and nutrient analysis to understand the role of methylglyoxal signalling in soybean exposed to zirconiumNdlovu, Linda Esihle January 2017 (has links)
Magister Scientiae - MSc (Biotechnology) / Soybean have been listed as a priority commodity crop in South Africa (SA) and
provide a good source of protein to the population. Therefore, soybean has been
earmarked as an important food security crop and strategies are currently being
discussed at governmental level to increase and sustain soybean production.
However, the SA landscape poses many challenges to the agricultural sector such
as prolong drought periods, flooding, nutrient poor soils, saline soils and heavy
metal contaminated soils. Heavy metal (HM) contamination is becoming a serious
concern and is aggravated by historical mining in SA. Indeed, SA has established
itself as the number one ranked mining country in the world and is frequently
mining metals such as chromium, vanadium, gold, zirconium, platinum, and
antimony. Prolong rainfall near mining areas leads to acid mine drainage which
lowers the soil pH to approximately two. These highly acidic soils will solubilize
the metals and cause the metals to leach into river systems as well as the water
table leading to increase heavy metal contamination in nearby soil sites. This
increase metal content negatively affects seed germination and overall plant
development. Nonetheless, plants have evolved numerous internal mechanisms
that help them to survive HM toxicity; by either avoiding or tolerating the stress.
Two stress-activated pathways that help the plant tolerate stress have attracted
much interest i.e. the glyoxalase system and reactive oxygen species (ROS) -
antioxidant system as they detoxify methylglyoxal (MG) and ROS. / 2021-08-31
|
7 |
Computational Studies of Enzymatic Enolization Reactions and Inhibitor Binding to a Malarial ProteaseFeierberg, Isabella January 2003 (has links)
Enolate formation by proton abstraction from an sp3-hybridized carbon atom situated next to a carbonyl or carboxylate group is an abundant process in nature. Since the corresponding nonenzymatic process in water is slow and unfavorable due to high intrinsic free energy barriers and high substrate pKa s, enzymes catalyzing such reaction steps must overcome both kinetic and thermodynamic obstacles. Computer simulations were used to study enolate formation catalyzed by glyoxalase I (GlxI) and 3-oxo-Δ5-steroid isomerase (KSI). The results, which reproduce experimental kinetic data, indicate that for both enzymes the free energy barrier reduction originates mainly from the balancing of substrate and catalytic base pKas. This was found to be accomplished primarily by electrostatic interactions. The results also suggest that the remaining barrier reduction can be explained by the lower reorganization energy in the preorganized enzyme compared to the solution reaction. Moreover, it seems that quantum effects, arising from zero-point vibrations and proton tunnelling, do not contribute significantly to the barrier reduction in GlxI. For KSI, the formation of a low-barrier hydrogen bond between the enzyme and the enolate, which is suggested to stabilize the enolate, was investigated and found unlikely. The low pKa of the catalytic base in the nonpolar active site of KSI may possibly be explained by the presence of a water molecule not detected by experiments. The hemoglobin-degrading aspartic proteases plasmepsinI and plasmepsin II from Plasmodium falciparum have emerged as putative drug targets against malaria. A series of C2- symmetric compounds with a 1,2-dihydroxyethylene scaffold were investigated for plasmepsin affinity, using computer simulations and enzyme inhibition assays. The calculations correctly predicted the stereochemical preferences of the scaffold and the effect of chemical modifications. Calculated absolute binding free energies reproduced experimental data well. As these inhibitors have down to subnanomolar inhibition constants of the plasmepsins and no measurable affinity to human cathepsin D, they constitute promising lead compounds for further drug development.
|
Page generated in 0.054 seconds