• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolation and Characterization of Proteus vulgaris Methylglyoxal Synthetase

Tsai, Pei-Kuo 05 1900 (has links)
Methylglyoxal synthetase, which catalyzes the formation of methylglyoxal and inorganic phosphate from dihydroxyacetone phosphate, was found in extracts of Proteus vulgaris. An efficient purification procedure utilizing ion exchange column chromatography and isoelectric focusing has been developed. Homogeneity of the enzyme preparation was confirmed by polyacrylamide gel electrophoresis and rechromatography.Two components of methylglyoxal synthetase were obtained upon isoelectric focusing. A comparison of the chemical and physical properties of the two components was carried out. The enzyme is a dimer. In the presence of inorganic phosphate, the hyperbolic saturation kinetics with dihydroxyacetone phosphate are shifted to sigmoidal.
2

Methylglyoxal Effects on Cell Division of Scenedesmus quadricauda (Scenedesmaceae)

Rhie, Kitae 08 1900 (has links)
Cell division of ggeneflesmus quadricauda (Turp.) Breb. (Scenedesmaceae) is enhanced by methylglyoxal, a general inhibitor of cell division, at threshold concentration in conjunction with treatment timing related to growth stage of batch cultures. At 0.5 mM methylglyoxal concentration, cell division was significantly enhanced in algae treated in the logarithmic phase. Specific growth rates of methylglyoxal-treated cultures were rapidly increased at the beginning of logarithmic phase. Cultures inoculated with high cell numbers were less sensitive, but still showed high specific growth rates in logarithmic phase. Cell division in cultures which had low cell numbers was inhibited by 0.5 mM methylglyoxal treatment. Both specific activity of Glyoxalase I and the ratio of Glyoxalase I to Glyoxalase II of methylgloxal-treated cultures were higher than those of controls (1.3 and 2.1- fold, respectively). Pyruvate concentration in treated cultures was increased after methylglyoxal treatment.

Page generated in 0.0446 seconds