• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1534
  • 298
  • 199
  • 166
  • 109
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3091
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 142
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Gold-catalysed oxidation of lignin-derived building blocks

Musharah, Amani January 2016 (has links)
The use of heterogeneous catalysts containing Au nanoparticles supported on TiO2 has been explored for oxidative aqueous phase transformations of sustainable phenolic and benzoic acid derivatives that can be obtained from lignin. Au/TiO2 catalysts were chosen because of their high activity for ambient pressure oxidations of gas phase species, and because their synthesis is facile and reproducible through a modified deposition-precipitation method. The aerobic oxidation of syringic, vanillic, and ferulic acid as well as of guaiacol, eugenol and anisole was investigated at temperatures up to 70°C under (i) atmospheric air sparging in an open reactor and (ii) at 10 atm air pressure in a closed reactor system. The catalysts were characterised by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP) Optical Emission Spectroscopy and the reproducibility of their catalytic activity independently monitored by determining their activity for carbon monoxide oxidation in a gas flow reactor. The oxidation of syringic acid, vanillic acid, ferulic acid over Au/TiO2 resulted in the formation of 2,6-dimethoxy benzoquinone, guaiacol, and vanillin, respectively, indicating high selectivity for decarboxylation followed by selective oxidation at the position releasing the leaving group. Guaiacol was found to form tetraguaiacol, while eugenol produced quinone methide. Generally, higher air pressure strongly accelerated the transformations, indicating that availability of oxidants formed from O2 is the rate limiting step in the observed transformations. No transformations took place when O2 was excluded from the systems. Overall, guaiacol was found to react fastest, followed by syringic acid, ferulic acid, then vanillic acid. Anisole was found to be unreactive, even at elevated air pressure. The overall reaction pattern emerging from these studies is that the aerobic oxidation in the presence of Au/TiO2 mimics known biotransformations, for example peroxidase-catalysed oxidations involving H2O2.To assess how the functional groups on the aromatic ring influence reactivity the oxidation of p-hydroxybenzoic acid and of 2,6-dimethoxybenzoic acid was also assessed. It was found that decarboxylation of p-hydroxybenzoic acid proceeds, albeit rather slowly, forming phenol, with no further oxidation to hydroquinone or benzoquinone. Taken together these results indicate that the methoxy moieties influence reactivity through both their inductive and resonance effects: leaving of the carboxylic acid group appears to be enhanced through the inductive effect, while further oxidation at the phenolic site seems to be activated through the resonance effect in ortho-position. In line with this hypothesis, it was recently found that dimethoxybenzoic acid converts fast.
282

Synthesis, Photoluminescence, chromatographic and electrophoretic studies of monolayer-protected gold nanoparticles

Paau, Man Chin 15 February 2016 (has links)
This thesis mainly consists of three parts. This first part is the synthesis of ultrasmall (< 2.0 nm) thiolated α-cyclodextrin-capped gold nanoparticles (α-CD-S-AuNPs). Per-6-thio-α-cyclodextrins were firstly synthesized and were employed to protect gold nanoparticles (AuNPs) from aggregation. These α-CD-S-AuNPs (core size < 2.0 nm) display remarkably strong blue emissions at 478 nm when excited at 400 nm. The 1.4 nm-sized α-CD-S-AuNP shows photoluminescence enhancement in the presence of tetraalkylammonium ions but is strongly quenched by Hg(II). We found that the α-CD-S-AuNP possesses ultrahigh sensitivity and good selectivity for the determination of Hg (II) with the limit of detection at 49 pM (9.7 ppt). In the second part of this work, two liquid chromatographic methods have been developed and their efficiencies in separating samples of polydisperse gold nanoparticles protected with N-acetyl-L-cysteine ligand (NAC-AuNPs) and other ultrasmall ligand-protected gold NPs are compared. The total elution time for analysing a NAC-AuNPs sample by ultra high-performance liquid chromatography (UHPLC) is ten times shorter than that of high-performance liquid chromatography. The major attributes of UHPLC are smaller sample volume (12 L) and better separation efficiency. More importantly, our proposed UHPLC method has been successfully applied to evaluate and compare polydisperse NAC-AuNPs products synthesised with the one-phase and two-phase Brust-Schiffrin methods. The results indicate that the two-phase method would harvest AuNPs product with smaller core size and less dispersity. The third part of this work is to describe a novel and effective capillary electrophoretic method to study positively charged, sub-nanometer-sized, water-soluble gold nanoclusters protected by N,N'-dimethylformamide (DMF-AuNC). The effects of buffer concentration, pH, and % ethanol (EtOH) on the electrophoretic mobility of the cationic DMF-AuNC are investigated. The optimum CE conditions are found to be 30 mM phosphate run buffer in 20 v/v % EtOH (pH 7.0) and an applied voltage of 15 kV. We find that the addition of SDS to the run buffer can enhanced the separation of cationic DMF-AuNC, attributing to the attachment of the charged SDS to the AuNC surface with a concomitant effect on changing the charge-to-size ratio of the cationic DMF-AuNC.
283

Synthesis and chemical aspects of aurated osmium high nuclearity carbonyl clusters

Akhter, Zareen January 1995 (has links)
No description available.
284

Application of microwaves in leaching

Mukendi, David Ngalula 14 May 2014 (has links)
M.Tech. (Extraction Metallurgy) / Please refer to full text to view abstract
285

Liberalization of the gold industry in South Africa

Sibanda, Venluxivan Hlakaza 18 March 2015 (has links)
M.Com. (Business Management) / Please refer to full text to view abstract
286

Effects of thermal-neutron irradiation on platinum and dilute platinum-gold alloys

Piani, Charles Sante Bernardo 25 October 2015 (has links)
M.Sc. (Physics) / Please refer to full text to view abstract
287

The constitution of the alloys of gallium and gold

Cooke, C. J. January 1966 (has links)
No description available.
288

The constitution of gold mercury alloys

Rolfe, Colin January 1966 (has links)
No description available.
289

Turbidite-hosted gold deposits

Leeming, Prudence Mary January 1985 (has links)
Turbidite-hosted gold deposits contribute a significant proportion to world lode gold production and have also provided substantial gold to alluvial resources. Turbidity current deposits occur throughout geological time within Archaean greenstone belts, Proterozoic orogenic belts and rifted passive continental margins, and Palaeozoic geosynclines. Representing the end member of the sedimentary cycle, turbidites have the attribute of preservation not only on an individual bed basis but also due to below wave base accumulation in submarine deeps. Cyclic deposition according to the Bouma sequence punctuates turbidite deposition by a series of diastems. Accumulation of organic, pelagic and chemical sediments may concentrate gold to protore enrichment levels i n a primary sedimentary environment. Dewatering during diagenesis and low-grade metamorphism under reducing conditions may redistribute gold with transport as low energy organo- and thio-complexes. Gold may precipitate with diagenetic pyrite and silica near black shale and/or partially replace fine carbonate detritus. Gold solubility increases with high grade amphibolite facies metamorphism (T 400ºC) when efficient leaching of gold and transport by simple chloro- and hydroxychloro - complexes to lower greenschist regions takes place. Reduced permeability of turbidite strata induces hydrofracturing which focuses dewatering solutions. Gold is deposited due to pressure and temperature decrease or local changes in physico - chemico conditions caused by the reaction of fluids with wall rocks (reactive beds in turbidites are predominantly carbonaceous strata). The largest of turbidite - hosted goldfields are confined to back -arc or marginal sea basins with restricted oceanic circulation. The richest concentrations of gold occur proximal to the original source within the greenschist facies formations lowermost in a thick turbidite sequence and exhibit strong combined structural and lithological association. Turbidites represent important strata for the concentration and preservation of gold not only during sedimentation and diagenesis but also during later deformation and metamorphism.
290

Geological characteristics of selected disseminated sediment-hosted gold deposits in Nevada, U.S.A. : in search of an exploration model

Skead, Michael Bethel 07 October 2013 (has links)
Sediment-hosted disseminated gold deposits in Nevada, western United States are major gold sources and contain reserves in excess of 1 500 metric tons of gold (Percival et aI., 1988). Discovery of these deposit types continues at a pace, with Placer Dome announcing a mojor discovery, Pipeline, to the south of the Gold Acres Mine, along the Battle Mountain - Eureka Trend in 1994 (The Northern Miner, 1994). Host sediments favoured for disseminated gold mineralisation are thinly bedded silty limestones , carbonate debris flows and to a lesser extent shale, chert and sandstone. The distribution of mineralisation is controlled essentially by the intersection of high-angle faults, which acted as conduits for hydrothermal fluids, with favourable host lithologies, anticlines, low-angle faults and other high-angle faults. Geochemical signature for these deposits is simple being Au, Ag, As, Sb, Hg, Tl, Te, F and Ba, but individual element concentrations vary greatly between and within deposits. Age of mineralisation is cause for considerable debate, and ages ranging between isotopic dates of approximately 117 Ma to early to mid-Tertiary (30-40 Ma) are proposed. Most of these deposits are situated along three major trends namely the Carlin, Battle Mountain - Eureka and Getchell trends. The Battle Mountain - Eureka trend and, to a lesser extent the Carlin trend, are defined by major linear aeromagnetic and gravity anomalies , which are believed to reflect deep-seated structures. Most deposits are hosted in autochthonous Devonian, thinly bedded, silty limestones that occur as windows through what is believed to be allochthonous Ordovician siliciclastic sediments, which were transported from west to east along the Roberts Mountains thrust during the late-Devonian Antler Orogeny. However, recent fossil dating of what were thought to be Ordivician siliciclastic sediments, gives a Devonian age. This questions the age of Ordivician sediments at the other deposits and the interpretation of the structural windows in which deposits are located. Fault-bounded, proximal, carbonate debris-flow breccias are now recognised as a major host to mineralisation. These debris flow breccias, together with interbedded carbonate and siliciclastic sediments, carbonaceous sediments and soft sediment deformation are all characteristics of lithologies in pull-apart basins which develop along a major strike slip faults. It is proposed that sediment-hosted disseminated gold mineralisation is controlled by the distribution of deep-seated long-lived, predominantly right-lateral strike-slip faults. It is along these strike-slip faults that syn-sedimentary pull-apart basins developed, within which sediments favoured by epigenetic gold mineralisation were deposited. These pull-apart basins were then overprinted by post-depositional extensional structures, such as negative flower structures. Igneous intrusions and hydrothermal cells have exploited these extensional structures in both compressional and extensional regional tectonic regimes. This model explains the characteristics of the host sediment at many of the deposits, the spatial relationship between igneous intrusion and mineralisation, spanning the period Cretaceous through to mid-Tertiary, the distribution of deposits as districts along major regional trends and why hydrothermal activity is noted between deposit districts but with no complementary mineralisation. Mineralisation is controlled predominantly by high angle structures and although the recent age for mineralisation at the Betze/Post deposit is ~ 117 Ma (Arehart et aI., 1993a), placing it in the compressional Sevier Orogeny, these high-angle structures would be developed within local extensional tectonic domains as described above. This model can, and should, be applied to other areas of the world where similar geological features exist. In exploring for these deposits in Nevada the distribution of Ordovician siliciclastic sediments should be reviewed, especially where spatially associated with deep regional structures. Ordovician sediments have historically been regarded as unfavourable, hence large areas for potential exploration have been ignored but with new ages for these sediments this opens large areas for potential discoveries. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in

Page generated in 0.0532 seconds