• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1533
  • 298
  • 199
  • 166
  • 108
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3089
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 141
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
941

Multi-modality imaging in planning patients with head and neck squamous cell carcinomas : myths and reality

Daisne, Jean-François 25 February 2005 (has links)
BACKGROUND : Radiation oncology was these 20 last years revolutionized by the 3-dimensional conformal radiotherapy (3D-CRT) and its technical evolution, the intensity modulated radiotherapy (IMRT). Thanks to steep dose gradient dose distribution, these techniques allow to conform the prescribed dose to the Planning Target Volume (PTV) while significantly decreasing the dose delivered to the Organs at Risk (OAR). One critical step remains the accurate definition of the Gross Tumor Volume (GTV). If the GTV is underestimated, there is a risk of missing part of the target. If the GTV is overestimated, the risk is to overirradiate normal tissues. Today's gold standard for GTV definition is the Computed Tomography (CT) scanner. We though know that its poor soft tissues contrast is a factor of variability for target definition purpose. AIMS : It can be hypothesized that, for Head and Neck Squamous Cell Carcinomas located in the oropharynx or the laryngo-hypopharynx, the use of other anatomical (like Magnetic Resonance Imaging – MRI) or functional (like positron emission tomography with either 11C-methionine – MET-PET- or 18F-fluorol-deoxy-glucose – FDG-PET) imaging modalities could complement CT for GTV delineation, and have an impact on subsequent CTV and PTV delineation and dose distribution to the non target tissues outside the PTV. RESULTS : We could demonstrate that, providing an adequate and controlled methodology concerning image coregistration and tumor volume delineation on functional images, differences were observed for the delineation of primary tumor volume or GTV according to the modality used. Moreover, the trends were the same for both locations studied (oropharyngeal and laryngo-hypopharyngeal) : CT, MRI and MET-PET volumes were not significantly different in absolute volumes, but there was no total overlap, each imaging modality having the tendency to visualize different types and relatively specific pathways of tumor extension (e.g. : cartilages in MRI). What was very interesting was the significantly smaller FDG-PET volume which could have a real impact on radiation oncology practice by (1) allowing to reduce dose distribution and (2) providing fast and reproducible GTV delineation based on its functional characteristic. Furthermore, we could demonstrate on the subset of operated patients that these smaller FDG-PET volumes were not the fact of a volume underestimating delineation algorithm but well the reflection of true tumor extension. But one must keep in mind that because of spatial resolution limitations, there was still a significant overestimate of this true GTV. Also, none of the imaging modalities was able to visualize very small tumor extensions. This last fact put in the light the need for strict guidelines for CTV prediction based on GTV extension. This is what was done with the help of both anatomical and histo-pathological literature data. These guidelines were used to delineate CTVs on our images, allowing to perform comparative planning on primary tumor. It could be concluded that differences in GTV had not only an impact on CTV and subsequent PTV, but also on dose distribution, either on total irradiated volume or -perhaps more important- on mean dose to parotid glands. No significant effect could be observed on maximal dose to spinal cord. Compared to planning performed on macroscopy-based volumes, no significant difference could be found with what was done on PET-derived planning. CONCLUSION : This research paves the way for the use of FDG-PET for GTV delineation in planning the patients with oropharyngeal and laryngo-hypopharyngeal squamous cell carcinomas. / INTRODUCTION : La radiothérapie moderne a terriblement évolué ces 20 dernières années grâce au développement de la radiothérapie conformationnelle tridimensionnelle (3D-CRT) et de son évolution technique, la radiothérapie par modulation d'intensité (IMRT). Grâce à la création de gradients de dose très raides, ces techniques permettent de conformer au mieux la distribution de la dose au “Planning Target Volume” (PTV) tout en diminuant de manière significative la dose délivrée aux Organes à Risque (OAR). La précision de la définition du “Gross Tumor Volume” (GTV) ou volume tumoral macroscopique reste une étape cruciale dans le sens où une sous-estimation du volume augmente le risque de sous-doser la dose délivrée à la tumeur. Dans l'autre sens, la surestimation du volume tumoral conduit immanquablement à une surirradiation des tissus sains. La tomographie computée par scanner (CT) est l'imagerie de référence pour la définition du GTV. Cependant, le manque de constraste entre tissus mous – à fortiori entre la tumeur et les tissus environnants- constitue un facteur de variabilité reconnu quant à la précision de délimitation du GTV. BUTS : Pour les cancers de la sphère cervico-maxillo-faciale, en particulier pour les tumeurs épithéliales oropharyngées et laryngo-hypopharyngées, démontrer que l'usage complémentaire d'une autre imagerie anatomique comme la résonance magnétique (IRM) ou fonctionnelle comme la tomographie par émission de positrons utilisant soit la méthionine marquée au carbone 11 (MET-TEP), soit le fluoro-déoxy-glucose marqué au fluor 18 (FDG-TEP) peut améliorer la précision de la délimitation GTV. Dans ce cas, démontrer également que cela a un impact sur la délimitation des CTV et PTV sous-jacents et, in fine, sur la distribution de la dose aux tissus sains extérieurs au PTV. RESULTATS : Moyennant l'utilisation adéquate et contrôlée de méthodes de corégistration des images et de délimitation automatique des volumes en imagerie fonctionnelle, nous avons pu démontrer des différences en terme de GTV délimité selon les différentes modalités d'imagerie, avec une tendance identique que l'on se situe au niveau oropharyngé ou laryngo-hypopharyngé. Les GTV délimités sur CT, IRM et MET-TEP n'étaient pas significativement différents en valeurs absolues, mais chaque modalité avait tendance, au-delà d'une zone de congruence s'élevant en moyenne à 50% du volume total, à visualiser des extensions vers des zones anatomiques lui étant propre (ex. : les cartilages en IRM). Les volumes délimités en FDG-TEP étaient significativement plus petits que ceux délimités sur les autres modalités d'imagerie. Nous pûmes de plus démontrer sur un ensemble de patients opérés par laryngectomie totale que le FDG-TEP était aussi la plus précise des modalités d'imagerie. Cependant, par manque de résolution spatiale, aucune des modalités d'imagerie ne fut en mesure de couvrir totalement le GTV. Ce fait met en lumière le besoin de recommendations claires pour la prédiction du CTV sur base de l'extension du GTV. Ce travail fut réalisé sur base des données de la littérature anatomique (normale et pathologique). Ces recommendations furent utilisées pour délimiter les CTV sur les images CT, FDG-TEP et du spécimen chirurgical (les imageries IRM et MET-TEP ne furent pas analysées puisque n'apportant rien en regard du CT). Les PTV furent ensuite générés et une planification tridimensionnelle réalisée. Tant les CTV que les PTV délimités sur le FDG-TEP restaient significativement plus petits que leurs homologues délimités sur CT. Cette réduction permettait une réduction de la dose délivrée aux glandes parotides en particulier, aux tissus hors PTV de manière plus générale. CONCLUSION : Cette recherche ouvre la voie à l'utilisation du FDG-TEP pour la délimitation du GTV chez les patients atteints de tumeurs épithéliales des sphères oropharyngée et laryngo-hypopharyngée.
942

Biological Routes to Gold Nanoplates

Xie, Jianping, Lee, Jim Yang, Ting, Yen Peng 01 1900 (has links)
Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and time-consuming steps such as morphology transformation from the nanospheres, or the seeded growth process. Herein we report a high yield method for gold nanoplate synthesis using the extract of unicellular green alga Chlorella vulgaris, which can be carried out under ambient conditions. More than 90% of the total nanoparticle population is of the platelet morphology, surpassing the previously reported value of 45%. The control of the anisotropic growth of different planes; as well as the lateral size, has also been partially optimized. / Singapore-MIT Alliance (SMA)
943

Self-assembly of extended, high-density gold nanoparticle monolayers on silicon dioxide /

Foster, Evan Wayne, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 173-182). Also available for download via the World Wide Web; free to University of Oregon users.
944

Tailoring the chemistry of gold surfaces with aryl Layers formed from diazonium cations

Shewchuk, Dwayne 11 1900 (has links)
The electrochemical reduction of para-substituted aryldiazonium cations is a convenient method of introducing chemical functional groups to a surface. The number of conductive surfaces that have been used for this purpose is rapidly expanding. The body of work presented in this thesis will serve to further investigate this method as it applies to polycrystalline gold surfaces. The stability of diazonium-derived nitroazobenzene (NAB) layers on Au was investigated by subjecting them to a variety of treatments including prolonged exposure to UV radiation, refluxing solvents, ultrasonication, chemical displacement by octadecanethiol (ODT), and the application of negative potentials to -1.5 V vs Ag/AgCl. Infrared reflection-absorption spectroscopy (IRRAS) and electrochemical blocking were used to make the assessments. The films are very resistant to ODT displacement reactions, moderately resistant to ultrasonication and refluxing; but not very resistant to the other treatments. In most cases, quantitative IRRAS measurements indicate that > 50 % of the layer resists the treatments. A direct, side-by-side comparison of the stability of nitrobenzene (NB) layers deposited electrochemically from nitrobenzene diazonium cations to self-assembled monolayers (SAMs) of mercaptonitrobenzene was made. Both types of layers are prone to removal by the various treatments. This is likely due to the presence of weakly bound, physisorbed material in addition to more strongly bound material. Immersion in an ODT solution results in complete displacement of the thiol derived nitrobenzene monolayer but does not completely displace the diazonium-derived layer. Two-component, mixed molecular layers comprised of diazonium-derived NAB and dodecanethiolate (DDT) were prepared using a sequential deposition approach. The aryl component is first deposited electrochemically, followed by immersion in a solution of DDT. We will demonstrate that control over the composition of the layers can be achieved by manipulating the concentration of NAB diazonium cations at the electrochemical grafting step. The mixed layers were characterized by reflection-absorption spectroscopy, atomic force microscopy, electrochemical blocking, and x-ray photoelectron spectroscopy. The electron transfer kinetics of hexaammineruthenium(III) chloride were examined at the mixed layer electrodes. The kinetics are highly dependent on the relative proportions of NAB and DDT present and the thickness of the NAB component. The NAB:DDT mixed films were employed as the molecular layer in molecular electronics junctions. We examined the suitability of Al2O3/Au top contacts for these junctions. Junctions for which the molecular layer was mostly comprised of DDT showed an increased failure rate.
945

Power Conversion Efficiency Enhancement Of Organic Solar Cells By Addition Of Gold Nanoparticles

Kozanoglu, Duygu 01 September 2012 (has links) (PDF)
In the first part of the study, power conversion efficiency enhancement of organic solar cells by addition of gold nanorods and gold nanostars into PEDOT: PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) layer was investigated. Efficiency of each sample set has been characterized by measuring current density-voltage characteristics. The best efficiencies obtained during this study are 2.88 % and 2.54 % by addition of gold nanostars and nanorods, respectively. The increase in PCEs is notable when these values are compared with the ones (1.67 %) obtained with a reference device which is prepared without adding any gold nanoparticles under the same conditions. In the second part of the study, branched gold nanoparticles were succesfully grown directly on different types of surfaces such as glass, silicon wafer, and indium-tin-oxide (ITO) coated glass with a simple solution-based method in order to utilize them for further applications.
946

Synthesis, Functionalization And Characterization Of Gold Nanoparticles

Sholanbayeva, Zhanar 01 November 2012 (has links) (PDF)
Metallic nanoparticles (NPs) with various elemental composition, size, shape and physical or chemical properties has become active field of research. Among all the metal NPs noble metal ones are receiving much attention due to their special optical properties which make them useful for different applications. Noble metal NPs have bright colors resulting from strong surface plasmon resonance absorption usually in the visible region. The colors are size and shape dependent and provide the tuning of optical properties. The optical properties of NPs are also strongly depending on the nature of the NPs surface which plays a crucial role on chemical sensing. Therefore, surface modification of NPs has become increasingly important. In this study, gold NPs were prepared in aqueous phase by seed-mediated growth method. To enhance the optical properties, surface functionalization was performed by coating NPs with silver. The coating process was achieved by chemical reduction of silver ions on NPs surface. Thickness of silver layer on the NPs were attempted to be controlled by the amount of silver salt added into NPs solution. Coating process of different types of gold NPs (rod, octahedral, star) was done by the same procedure. Moreover, this attempt yielded control over silver layer thickness on sphere, rod and octahedral shaped gold NPs, but not on branched NPs. The structure, composition and spectroscopic properties of Au-Ag core shell NPs were characterized by UV-Vis spectroscopy, Field Emission Transmission Electron Microscope (FE-TEM) and Energy-dispersive X-ray (EDX) studies, Scanning Electron Microscope (SEM), and X-Ray Photoelectron Spectroscopy (XPS). The analysis showed that all NPs studied were successfully coated with silver and promising for further explorations in sensing and imaging applications.
947

Electromechanical Investigation of Low Dimensional Nanomaterials for NEMS Applications

January 2011 (has links)
Successful operation of Nano-ElectroMechanical Systems (NEMS) critically depends on their working environment and component materials' electromechanical properties. It is equally important that ambient or liquid environment to be seriously considered for NEMS to work as high sensitivity sensors with commercial viabilities. Firstly, to understand interaction between NEMS oscillator and fluid, transfer function of suspended gold nanowire NEMS devices in fluid was calculated. It was found that NEMS's resonance frequency decreased and energy dissipation increased, which constrained its sensitivity. Sensitivity limit of NEMS oscillators was also considered in a statistical framework. Subsequently, suspended gold nanowire NEMS devices were magnetomotively actuated in vacuum and liquid. Secondly, electromechanical properties of gold nanowires were carefully studied and the observed size effect was found to agree with theory, which predicted small changes of electromechanical property compared with bulk gold materials. Finally, it is well recognized that continuous development of new NEMS devices demands novel materials. Mechanical properties of new two-dimensional hexagonal Boron Nitride films with a few atomic layers were studied. Outlook of utilizing ultrathm BN films in next generation NEMS devices was discussed.
948

Synthesis and Characterization of Two Component Alloy Nanoparticles

January 2011 (has links)
Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (T m 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can reflow at lower temperatures leading to lower thermal stresses in adjacent electronic components during the manufacturing process, offering better thermal and mechanical properties suitable for high temperature electronic applications. The second system studied here is Ag-Ni ANPs and electron microscopy and spectroscopy confirm the formation of Ag 0.5 Ni 0.5 ANPs with cubic structure, stable up to125°C. Atomic size and crystalline structure have less effect on the alloy formation process at the nanoscale; therefore, metals with limited solubility in bulk could form solid solutions at the nanoscale. Ag and Ni are immiscible in both solid and liquid states due to the large lattice mismatch and thermodynamically, the formation of core-shell structures is favoured. The effect of capping agents on the alloying was also studied here. Polyvinyl alcohol (PVA) with shorter length shows Ag-Ni ANPs with higher content of Ni compared to sodium citrate; the systems lead to the formation of Ag, Ag 2 O 2 and Ag 0.5 Ni 0.5 ANPs. The study of multi-component nanoparticle systems could shed light into the various parameters that affect stability of structure and phases, which could be quite distinct from their bulk counterparts.
949

Synthesis of oligo(lactose)-based thiols and their self-assembly onto gold surfaces

Fyrner, Timmy, Ederth, Thomas, Aili, Daniel, Liedberg, Bo, Konradsson, Peter January 2013 (has links)
The ability to produce monomolecular coatings with well-defined structural and functional properties is of key importance in biosensing, drug delivery, and many recently developed applications of nanotechnology. Organic chemistry has proven to be a powerful tool to achieve this in many research areas. Herein, we present the synthesis of three oligo(lactosides) glycosylated in a (1 → 3) manner, and which are further functionalized with amide-linked short alkanethiol spacers. The oligosaccharides (di-, tetra-, and hexasaccharide) originate from the inexpensive and readily available lactose disaccharide. These thiolated derivatives were immobilized onto gold surfaces, and the thus formed self-assembled monolayers (SAMs) on planar gold were characterized by wettability, ellipsometry and infrared reflection–absorption spectroscopy. Further, the ability of these SAMs to stabilize gold nanoparticles in saline solutions was also demonstrated, indicating that the oligosaccharides may be used as stabilizing agents in gold nanoparticle-based assays.
950

Variance Risk Premium in GOLD VIX Market

Xiao, Guanli 01 January 2013 (has links)
In this thesis, I study the variance risk premium in Gold VIX market. Using synthetically created variance swaps, I quantify the variance risk premium to be average -0.068 in absolute terms and -0.358 in log return terms, meaning that purchasing volatility in Gold VIX is generally unprofitable. Although the average negative risk premium is not statistically significant, the mean log return of risk premium is robust with Newey-West test. Furthermore, I attempt to test whether risk premium vary with time or the level of the swap rate, but obtain unclear results.

Page generated in 0.054 seconds