• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Dynamic Behavior of Gold Nanowire By Molecular Dynamics Simulation Method

Weng, Meng-Shiung 07 September 2006 (has links)
The molecular dynamics is employed to investigate the dynamical behavior of helical multi-shell gold nanowire with diameter < 2nm . The study can be arranged into two parts, which are part I ¡§The investigation of the dynamical behavior of 7-1 gold nanowire on different axial strain¡¨ and part II ¡§the investigation of the self-assembly of crossed multi-shell gold nanowires ¡¨. In part I: We investigate the dynamical behavior of 7-1 gold nanowire on different axial strain. Some physical properties can also be determined during the tensile process, which including the strain-stress relationship, yield stress, and bond length. Moreover, vibrational properties under different tensile strains also are discussed . In part II: The aim of this work is to investigate the effect of fixed and flexible boundary conditions during the self-assembly of crossed multi-shell gold nanowires. The atomic trajectory and deformation morphology have been discussed during the assembly process. In addition, the structure transformation has also been observed on the junction by estimating the Angular Correlation Function (ACF).
2

Optics and spectroscopy of gold nanowires

Vasanthakumar, Priya 14 May 2012 (has links) (PDF)
We have reported the optical properties of isolated gold nanowires and of nanowire arrays. Despite the advantages gold has to offer as it is less sensitive to oxidation and as an biocompatible metal, it has been scarcely studied than silver or semiconductors nanowires. We have made surface enhanced Raman spectroscopic (SERS) studies on the isolated nanowires and nanowire arrays. Single molecule regime is attained and has been proven with the aid of two dye molecules that are co-deposited. The propagation of surface plasmons in these nanowires and their evolution with the excitation wavelength have been studied. We report a propagation distance of 3.8 µm which is longer than the values previously reported in literature. Nanowire arrays have been investigated with two dyes again to disentangle the various factors contributing to SERS. Polarization studies and the evolution of enhancement in the nanowires with the wavelength have been reported and explained with the aid of simulations obtained by the discrete dipole approximation (DDA). The scanning near field optical microscopy (SNOM) has been done to investigate the local field enhancements on the nanowire arrays. Two different polarizations and two excitation wavelengths have been used. The original idea of the technique includes the use of two illumination modes which serves two purposes. One, to map the regions of enhanced field and the other to study the propagation effects seen on the nanowire.
3

Design and Fabrication of Nanostructures for the Enhancement of Photovoltaic Devices

Prevost, Richard M, III 19 May 2017 (has links)
In 2012 the net world electricity generation was 21.56 trillion kilowatt hours. Photovoltaics only accounted for only 0.1 trillion kilowatt hours, less than 1 % of the total power. Recently there has been a push to convert more energy production to renewable sources. In recent years a great deal of interest has been shown for dye sensitized solar cells. These devices use inexpensive materials and have reported efficiencies approaching 12% in the lab. Here methods have been studied to improve upon these, and other, devices. Different approaches for the addition of gold nanoparticles to TiO2 films were studied. These additions acted as plasmonic and light scattering enhancements to reported dye sensitized devices. These nanoparticle enhancements generated a 10% efficiency in device performance for dye sensitized devices. Quantum dot (QD) sensitized solar cells were prepared by successive ionic layer adsorption and reaction (SILAR) synthesis of QDs in mesoporous films as well as the chemical attachment of colloidal quantum dots using 3-mercaptopropionic acid (3-MPA). Methods of synthesizing a copper sulfide (Cu2S) counter electrode were investigated to improve the device performance. By using a mesoporous film of indium tin oxide nanoparticles as a substrate for SILAR growth of Cu2S catalyst, an increase in device performance was seen over that of devices using platinum. These devices did suffer from construction drawbacks. This lead to the development of 3D nanostructures for use in Schottky photovoltaics. These high surface area devices were designed to overcome the recombination problems of thin film Schottky devices. The need to deposit a transparent top electrode limited the success of these devices, but did lead to the development of highly ordered metal nanotube arrays. To further explore these nanostructures depleted heterojunction devices were produced. Along with these devices a new approach to depositing lead sulfide quantum dots was developed. This electrophoretic deposition technique uses an applied electric field to deposit nanoparticles onto a substrate. This creates the possibility for a low waste method for depositing nanocrystals onto nanostructured substrates.
4

Incorporation of Gold Nanowires into Photovoltaic Devices

Gordon, Scott W 23 May 2019 (has links)
To this day, fossil fuels still make up over 80% of the earth’s energy production. Many sources of renewable energy are available, but photovoltaics is the only source with the capacity proven to meet the increasing world energy needs. Third generation devices such as dye-sensitized and organic solar cells have gained much interest due to their cost effectiveness and flexibility but have yet to become commercially viable. Here methods have been studied to improve these devices with the use of Gold nanowire arrays. These additions provide plasmonic and light scattering enhancements in dye-sensitized solar cells. Different TiO2 deposition methods have been studied to protect the gold from the redox couple in the electrolyte. Several novel methods have been undertaken to incorporate gold nanowire arrays in organic solar cells with some success. Structural characterization shows the proposed architecture is achieved, but working devices met suffered from low success rate.
5

Bleach Imaged Plasmon Propagation (BlIPP) of Metallic Nanoparticle Waveguides

Solis, David 16 September 2013 (has links)
The high speed transfer of information in materials with dimensions below the sub-diffraction limit is essential for future technological developments. Metallic nanoparticle (NP) waveguides serve a unique role in efficient energy transfer in this size regime. Light may be confined to metallic structures and propagate along the surface of the waveguide via propagating plasmon waves known as surface plasmon polaritons (SPPs). Plasmon propagation of energy in metallic structures is not perfect however and damping losses from the waveguide material lead to a characteristic exponential decay in the plasmon near field intensity. This decay length is known as the propagation length and serves as an excellent metric to compare various waveguide materials and structures to one another at particular excitation wavelengths. This thesis presents recent work in the development of a novel measurement technique termed bleach imaged plasmon propagation (BlIPP). BlIPP uses the photobleaching property of fluorophores and far field fluorescence microscopy to probe the near-field intensity of propagating plasmons and determine the propagation length. The experimental setup, image analysis, conditions, and application of BlIPP are developed within this thesis and an in depth review of the 1-photon photobleaching mechanism is also investigated. The BlIPP method is used to investigate long plasmon propagation lengths along straight chains of tightly packed Au NPs through the coupling of light to sub-radiant propagating modes, where radiative energy losses are suppressed. The findings of this work reveal, experimentally, the importance of small gap distances for the propagation of energy. Complex chain architectures are then explored using BlIPP measurements of tightly packed straight and bent chains of spherical silver NPs. We observe the highly efficient propagation of energy around sharp corners with no additional bending losses. The findings of this thesis demonstrate the advantages and capabilities of using BlIPP propagation length measurement. Further, BlIPP is used to reveal the advantage of coupling light to sub-radiant modes of NP chains, which demonstrate the ability to guide light efficiently across long distances and around complex structures, bringing us a step closer to the goal of applying plasmonic devices and circuitry in ultra compact opto-electronic devices.
6

The Study of Mechanical Properties of the Helical Multi-Shell Gold Nanowire

Lee, Wen-Jay 25 July 2005 (has links)
In recent year, the quantum device has been rapid developed. The quantum conductor has been of great interest for most authors, and one of that is gold nanowire. As the diameter of the gold nanowire is smaller than 2nm, the structure arrangement is affected by surface tensor, and therefore the FCC structure will self assemble to a helical structure. However, the nanowire would be used in quantum devices, therefore, the material property must be understood and investigated. The properties of nanowire would be a significant on development of quantum device in the future. In this study, the molecular dynamics is employed to investigate the mechanical properties of the helical multi-shall gold nanowires and nanowries of the bulk FCC. The stress and strain relationship is obtained form the tensile and compressed tests. In addition, the yielding stress, maximum stress, Young¡¦s modulus, and breaking force can be determined from the tensile test and compressed test. Moreover, the different length/diameter ratio, temperature, and strain rate effects on mechanical properties and deformation behaviors are also investigated. The structure transform from crystalline to non-crystalline is also observed by the variation of radial distribution function (RDF) and angular correlation function (ACF). In this study, the tight-binding many body potential is employed to model the interaction between gold atoms.
7

A LIPID TALE: ALKYL TAIL IMPURITIES IN TECHNICAL-GRADE OLEYLAMINE REGULATE THE GROWTH AND ASSEMBLY OF ULTRANARROW GOLD NANOWIRES AT CHEMICALLY PATTERNED INTERFACES

Erin Noel Lang (12427296) 18 April 2022 (has links)
<p>  </p> <p>A staggering number of problems in materials chemistry relate to controlling the assembly of matter at <10 nm scales, including those with applications in nanoelectronics, energy harvesting, and biomedical device design. It is difficult to achieve precise chemical patterning at the short length scales required for such applications using traditional top-down fabrication methods (<em>e.g., </em>lithographic techniques). On the other hand, biological systems create high-resolution chemical patterns with remarkable efficiency, by assembling simple molecular building blocks with nm-scale features (<em>e.g.,</em> nucleotides, amino acids, lipids) into structurally complex motifs capable of carrying out the diverse functions required for life. </p> <p>Drawing inspiration from the diverse structures and functions of lipids in biological membranes, this work uses lipids to create high-resolution chemical patterns at interfaces, control the growth and self-assembly of nanocrystals, and to facilitate interactions that precisely template nanocrystals at chemically patterned surfaces.</p> <p>Functional alkanes assemble into striped phase monolayers on highly oriented pyrolytic graphite (HOPG), in which the alkyl chains are oriented parallel to the substrate, expressing both the polar and nonpolar regions of the amphiphile at the environmental interface. The same is true for diyne phosphoethanolamine (dPE), a phospholipid with a zwitterionic headgroup. When assembled into striped phases on HOPG, the headgroup zwitterions of dPE are confined in 1-nm-wide rows of functional groups with a pitch of ~7 nm, resulting in ordered arrays of orientable dipoles at the HOPG surface. The chemistry of dimensionally confined functional groups is distinct from bulk solution phase chemistry, and in this case enables powerful directing effects which can be used to template the adsorption of ultranarrow gold nanowires (AuNWs) in precise alignment with the template stripes. </p> <p>Technical grade oleylamine (<em>cis</em>-9-octadecen-1-amine, OLAm, 70% purity) serves as the capping ligand for the AuNWs used in this work, and additionally plays an important role in the assembly of AuNWs at dPE/HOPG surfaces. While technical-grade reagents enable cost-effective and scalable production of materials, variation in the composition of impurities between different batches have significant impacts on nanocrystal morphology and assembly. We show that thermal transitions of alkyl chain impurities (<em>trans</em> and saturated chains) in AuNW ligand shells can be used to regulate AuNW assembly at chemically patterned interfaces. </p> <p>Characterization of OLAm reagents by 1H NMR and mass spectrometry reveals significant and highly variable fractions elaidylamine (ELAm, <em>trans</em>-9-octadecen-1-amine) and octadecylamine (ODAm) between different batches of OLAm. To understand the phase behavior of mixtures of the C18 alkylamines commonly found in technical grade OLAm, we synthesize isomerically pure OLAm and its <em>trans</em> isomer, elaidylamine (ELAm), to generate binary and ternary mixtures with (ODAm), which is commercially available in high purity. Differential scanning calorimetry reveals limited miscibility of the C18 chains, and demonstrates the significant impact of chain composition on the physical properties of mixtures of alkyl chains (<em>e.g.,</em> tech. grade OLAm). Finally, we examine the impacts of <em>trans</em> and saturated alkyl chains on AuNW synthesis. We find that inclusion of ODAm and ELAm in the ligand blend used for AuNW synthesis each result in shorter AuNWs than those synthesized with pure OLAm. We also observe enhanced stability of surface adsorbed AuNWs conferred by <em>trans </em>and saturated chains. </p>
8

Optics and spectroscopy of gold nanowires / Propriétés optiques et spectroscopiques de nanofils d'or

Vasanthakumar, Priya 14 May 2012 (has links)
Les études portent sur les propriétés optiques de nanofils d’or individuels et de réseaux de nanofils d’or. Malgré ses avantages, comme une sensibilité moindre à l’oxydation et sa biocompatibilité, les nanofils en or ont été peu étudiés par comparaison avec les nanofils en argent ou semiconducteurs. Les études sur ces substrats ont été réalisées par spectroscopie Raman exaltée de surface (SERS). Le régime de la molécule unique est atteint, ce que j’ai démontré en utilisant deux molécules différentes de colorant, co-déposées. J’ai étudié la propagation des plasmons de surface dans les nanofils ainsi que son évolution en fonction de la longueur d’onde. Une distance de propagation de 3,8 µm a été observée, plus grande que les valeurs précédemment rapportées. Les réseaux de nanofils ont également été étudiés en combinant la réponse de deux molécules pour démêler les différents processus contribuant au signal de la diffusion Raman. Les résultats obtenus par des études en polarisation et en fonction de la longueur d’onde sur l’évolution de l’intensité du signal SERS ont été confrontés aux résultats de simulations réalisées par la méthode de l’approximation des dipôles discrets (DDA). La microscopie de champ proche optique à balayage (SNOM) a été mise en œuvre pour étudier les effets d’exaltation locale sur les réseaux de nanofils. Ces études ont été réalisées avec deux polarisations croisées et à deux longueurs d’onde différentes. L’originalité des études SNOM repose sur l’utilisation de deux modes différents d’éclairement. L’un est utilisé pour cartographier l’exaltation des champs électromagnétiques, l’autre pour étudier les effets de propagation des plasmons dans les nanofils. / We have reported the optical properties of isolated gold nanowires and of nanowire arrays. Despite the advantages gold has to offer as it is less sensitive to oxidation and as an biocompatible metal, it has been scarcely studied than silver or semiconductors nanowires. We have made surface enhanced Raman spectroscopic (SERS) studies on the isolated nanowires and nanowire arrays. Single molecule regime is attained and has been proven with the aid of two dye molecules that are co-deposited. The propagation of surface plasmons in these nanowires and their evolution with the excitation wavelength have been studied. We report a propagation distance of 3.8 µm which is longer than the values previously reported in literature. Nanowire arrays have been investigated with two dyes again to disentangle the various factors contributing to SERS. Polarization studies and the evolution of enhancement in the nanowires with the wavelength have been reported and explained with the aid of simulations obtained by the discrete dipole approximation (DDA). The scanning near field optical microscopy (SNOM) has been done to investigate the local field enhancements on the nanowire arrays. Two different polarizations and two excitation wavelengths have been used. The original idea of the technique includes the use of two illumination modes which serves two purposes. One, to map the regions of enhanced field and the other to study the propagation effects seen on the nanowire.
9

Controlled Interfacial Adsorption of AuNW Along 1-Nm Wide Dipole Arrays on Layered Materials and The Catalysis of Sulfide Oxygenation

Ashlin G Porter (6580085) 12 October 2021 (has links)
<p>Controlling the surface chemistry of 2D materials is critical for the development of next generation applications including nanoelectronics and organic photovoltaics (OPVs). Further, next generation nanoelectronics devices require very specific 2D patterns of conductors and insulators with prescribed connectivity and repeating patterns less than 10 nm. However, both top-down and bottom-up approaches currently used lack the ability to pattern materials with sub 10-nm precision over large scales. Nevertheless, a class of monolayer chemistry offers a way to solve this problem through controlled long-range ordering with superior sub-10 nm patterning resolution. Graphene is most often functionalized noncovalently, which preserves most of its intrinsic properties (<i>i.e.,</i> electronic conductivity) and allows spatial modulation of the surface. Phospholipids such as 1,2-bis(10,12-tricsadiynoyl)-<i>sn­</i>-glycero-3-phosphoethanolamine (diyne PE) form lying down lamellar phases on graphene where both the hydrophilic head and hydrophobic tail are exposed to the interface and resemble a repeating cross section of the cell membrane. Phospholipid is made up of a complex headgroup structure and strong headgroup dipole which allows for a diverse range of chemistry and docking of objects to occur at the nonpolar membrane, these principals are equally as important at the nonpolar interface of 2D materials. A key component in the development of nanoelectronics is the integration of inorganic nanocrystals such as nanowires into materials at the wafer scale. Nanocrystals can be integrated into materials through templated growth on to surface of interest as well as through assembly processes (i.e. interfacial adsorption). </p> <p>In this work, I have demonstrated that gold nanowires (AuNWs) can be templated on striped phospholipid monolayers, which have an orientable headgroup dipoles that can order and straighten flexible 2-nm diameter AuNWs with wire lengths of ~1 µm. While AuNWs in solution experience bundling effects due to depletion attraction interactions, wires adsorb to the surface in a well separated fashion with wire-wire distances (e.g. 14 or 21 nm) matching multiples of the PE template pitch. This suggests repulsive interactions between wires upon interaction with dipole arrays on the surface. Although the reaction and templating of AuNWs is completed in a nonpolar environment (cyclohexane), the ordering of wires varies based on the hydration of the PE template in the presence of excess oleylamine, which forms hemicylindrical micelles around the hydrated headgroups protecting the polar environment. Results suggest that PE template experience membrane-mimetic dipole orientation behaviors, which in turn influences the orientation and ordering of objects in a nonpolar environment.</p> <p>Another promising material for bottom-up device applications is MoS<sub>2 </sub>substrates due to their useful electronic properties. However, being able to control the surface chemistry of different materials, like MoS<sub>2</sub>, is relatively understudied, resulting in very limited examples of MoS<sub>2 </sub>substrates used in bottom-up approaches for nanoelectronics devices. Diyne PE templates adsorb on to MoS<sub>2 </sub>­in an edge-on conformation in which the alkyl tails stack on top of each other increasing the overall stability of the monolayer. A decrease in lateral spacing results in high local concentrations of orientable headgroups dipoles along with stacked tails which could affect the interactions and adsorption of inorganic materials (i.e. AuNW) at the interface. </p> <p>Here, I show that both diyne PE/HOPG and diyne PE/MoS<sub>2</sub> substrates can template AuNW of various lengths with long range ordering over areas up to 100 µm<sup>2</sup>. Wires on both substrates experience repulsive interactions upon contact with the headgroup dipole arrays resulting in wire-wire distances greater than the template pitch (7 nm). As the wire length is shortened the measured distance between wires become smaller eventually resulting in tight packed ribbon phases. Wires within these ribbon phases have wire-wire distances equal to the template. Ribbon phases occur on diyne PE/HOPG substrates when the wire length is ~50 nm, whereas wire below ~600 nm produce ribbon phases on diyne PE/MoS<sub>2­ </sub>substrates. </p> <p>Another important aspect to future scientific development is the catalysis of organic reactions, specifically oxygenation of organic sulfides. Sulfide oxygenation is important for applications such as medicinal chemistry, petroleum desulfurization, and nerve agent detoxification. Both reaction rates and the use of inexpensive oxidants and catalysts are important for practical applications. Hydrogen peroxide and <i>tert</i>-butyl hydroperoxide are ideal oxidants due to being cost efficient and environmentally friendly. Hydrogen peroxide can be activated through transition metal base homogeneous catalysts. Some of the most common catalysts are homo- and hetero-polyoxometalates (POMs) due their chemical robustness. Heptamolybdate [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub> </sub>is a member of the isopolymolybdate family and its ammonium salt is commercially available and low in cost.<sup>22</sup> Heteropolyoxometalates have been widely studied as a catalyst for oxygenation reactions whereas heptamolybdate has been rarely studied in oxygenation reactions. </p> <p> Here I report sulfide oxygenation activity of both heptamolybdate and its peroxo derivate [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>. Sulfide oxygenation of methyl phenyl sulfide (MPS) by H<sub>2</sub>O<sub>2 </sub>to sulfoxide and sulfone occurs rapidly with 100 % utility of H<sub>2</sub>O<sub>2</sub> in the presence of [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>, suggesting the peroxo adduct is an efficient catalyst. However, heptamolybdate is a faster catalyst compared to [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup> for MPS oxygenation and all other sulfides tested under identical conditions. Pseudo-first order <i>k</i><sub>cat</sub> constants from initial rate kinetics show that [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub> </sub>catalyzes sulfide oxygenation faster. The significant difference in the <i>k</i><sub>cat</sub> suggests differences in the active catalytic species, which was characterized by both UV-Vis and electrospray ionization mass spectrometry. ESI-MS suggest that the active intermediate of [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub> </sub>under catalytic reaction conditions for sulfide oxygenation by H<sub>2</sub>O<sub>2</sub> is [Mo<sub>2</sub>O<sub>11</sub>]<sup>2-</sup>. These results show that heptamolybdate is a highly efficient catalyst for H<sub>2</sub>O<sub>2 </sub>oxygenation of organic sulfides.</p>
10

Investigation of Structural and Electronic Aspects of Ultrathin Metal Nanowires

Roy, Ahin January 2015 (has links) (PDF)
The constant trend of device miniaturization along with ever-growing list of unusual behaviour of nanoscale materials has fuelled the recent research in fabrication and applications of ultrathin (~2 nm diameter) nanowires. Although semiconductor nanowires of this dimension is well-researched, molecular-scale single-crystalline metal nanowires have not been addressed in details. Such single crystalline Au nanowires are formed by oriented attachment of Au nanoparticles along [111] direction. A very low concentration of extended defects in these wires result in a high electrical conductivity, making them ideal for nanoscale interconnects. Other metal nanowires, e.g. Ag and Cu, have very low absorption co-efficient useful for fabrication of transparent conducting films. On the other hand, because of the reduced dimensions, there exists a tantalizing possibility of dominating quantum effects leading to their application in sensing and actuation. Also, speaking in terms of atomic structure, these systems suffer from intense surface stress, and the atomistic picture can be drastically different from bulk. Thus, although a myriad of applications are possible with ultrathin metal nanowires, a rigorous systematic knowledge of their atomic and electronic structure is not yet available. This thesis is the first one to model such computationally demanding systems with emphasis on their possible applications. In this thesis, we have explored various structural and electronic aspects of one-dimensional ultrathin nanowires with ab initio density functional theory coupled with experiments. The merit of Au nanowires has been tested as nanoscale interconnects. From atomistic point of view, these FCC Au nanowires exhibit an intriguing relaxation mechanism, which has been explored by both theory and experiment. The primary factor governing the relaxation mechanism was found to be the anisotropic surface stress of the bounding facets, and it is extended to explain the relaxation of other metallic nanowires. Our studies suggest that AuNWs of this dimension show semiconductor-like sensitivity towards small chemical analytes and can be used as nanoscale sensors. Also, we have found that further reducing the diameter of the Au-nanowires leads to opening of a band gap.

Page generated in 0.0939 seconds