Spelling suggestions: "subject:"turesky"" "subject:"gore's""
1 |
A generalization of the Goresky-Klapper conjectureRichardson, CJ January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Christopher G. Pinner / For a fixed integer n ≥ 2, we show that a permutation of the least residues mod p of the form f(x) = Ax[superscript k] mod p cannot map a residue class mod n to just one residue class mod n once p is sufficiently large, other than the maps f(x) = ±x mod p when n is even and f(x) = ±x or ±x [superscript (p+1)/2] mod p when n is odd. We also show that for fixed n the image of each residue class mod n contains every residue class mod n, except for a bounded number of maps for each p, namely those with (k −1, p−1) > (p−1)/1.6n⁴ and A from a readily described set of size less than 1.6n⁴. For n > 2 we give O(n²) examples of f(x) where the image of one of the residue classes mod n does miss at least one residue class mod n.
|
2 |
On The Goresky-Hingston ProductMaiti, Arun 17 February 2017 (has links) (PDF)
In [GH09] M. Goresky and N. Hingston described and investigated various properties of a product on the cohomology of the free loop space of a closed, oriented manifold M relative to the constant loops. In this thesis we will give Morse and Floer theoretic descriptions of the product. There is a theorem due to J. Jones in [JJ87] which describes an isomorphism between cohomology of the free loop space and Hochschild homology of the singular cochain algebra of M with rational coefficients. We will use the theorem of J. Jones to find an algebraic model for the Goresky-Hingston product. We then use the algebraic model to explore further properties and applications of the Goresky Hingston product. In particular we use it to compute the ring structure for the n-spheres.
|
3 |
Réduction des graphes de Goresky-Kottwitz-MacPherson ; nombres de Kostka et coefficients de Littlewood-RichardsonCochet, Charles 19 December 2003 (has links) (PDF)
Ce travail concerne la réalisation concrète en calcul formel d'algorithmes abstraits issus de publications récentes. Il comporte deux parties distinctes mais cependant issues du m(ê)me monde : l'action d'un groupe de Lie, sur une variété ou un espace vectoriel. La première partie traite de l'implémentation de la réduction d'un graphe de Goresky-Kottwitz-MacPherson. Ce graphe est l'analogue combinatoire d'une variété symplectique compacte connexe soumise à une action hamiltonienne d'un tore compact. La seconde partie est consacrée à l'implémentation du calcul de deux coefficients intervenant lors de l'action d'un groupe de Lie semi-simple complexe sur un espace vectoriel de dimension finie : la multiplicité d'un poids dans une représentation irréductible de dimension finie (nombre de Kostka) et les coefficients de décomposition du produit tensoriel de deux représentations irréductibles de dimension finie (coefficients de Littlewood-Richardson).
|
4 |
On The Goresky-Hingston ProductMaiti, Arun 25 January 2017 (has links)
In [GH09] M. Goresky and N. Hingston described and investigated various properties of a product on the cohomology of the free loop space of a closed, oriented manifold M relative to the constant loops. In this thesis we will give Morse and Floer theoretic descriptions of the product. There is a theorem due to J. Jones in [JJ87] which describes an isomorphism between cohomology of the free loop space and Hochschild homology of the singular cochain algebra of M with rational coefficients. We will use the theorem of J. Jones to find an algebraic model for the Goresky-Hingston product. We then use the algebraic model to explore further properties and applications of the Goresky Hingston product. In particular we use it to compute the ring structure for the n-spheres.
|
Page generated in 0.0613 seconds