51 |
Granular Jamming: Stiffness vs Pressure and Organ Palpation DevicesQuach, Christopher H 01 January 2023 (has links) (PDF)
The intent of this thesis it to find a correlation between the stiffness of granular jammed particles and the pressure of the vacuum initiating the jamming force. Currently, granular jamming is being used to create palpation simulators for physicians to practice feeling the variety of stiffnesses of organs when healthy or ill. Because granular jamming allows for variable stiffness of any shape, it is an apt phenomenon to simulate the change of rigidity organs like the liver undergoes when diseased. For physicians to correctly identify how stiff the organ must be when using these palpation simulators, there needs to be a way to know how much pressure must be applied to correctly simulate the stiffness of the organ for each specific scenario. This thesis will discuss how pressure affects stiffness by using the three-point bending test. To perform this test, a tubular balloon filled with coffee granules was used to represent the beam. An impact force as well as a hanging force was used to displace the beam. The displacement of the beam is adequate to find the Young's Modulus or stiffness of the beam of granules at different pressures provided by the vacuum. It was found that there is a correlation between stiffness and pressure of a granular jammed system. This will allow for future physicians to accurately and consistently use model organs to practice palpation techniques.
|
52 |
Mechanical properties of granular materials as related to loads in cylindrical grain silos /Gumbe, Lawrence Otweyo-Migire January 1987 (has links)
No description available.
|
53 |
Kinetic Theory for Anisotropic Thermalization and Transport of Vibrated Granular MaterialKhambekar, Jayant Vijay 02 May 2007 (has links)
The purpose of this work is to develop a continuum theory that may be used to predict the effects of anisotropic boundary vibrations on loose granular assemblies. In order to do so, we extend statistical averaging techniques employed in the kinetic theory to derive an anisotropic flow theory for rapid, dense flows of identical, inelastic spheres. The theory is anisotropic in the sense that it treats the full second moment of velocity fluctuations, rather than only its isotropic piece, as a mean field to be determined. In this manner, the theory can, for example, predict granular temperatures that are different in different directions. The flow theory consists of balance equations for mass, momentum, and full second moment of velocity fluctuations, as well as constitutive relations for the pressure tensor, the flux of second moment, and the source of second moment. The averaging procedure employed in deriving the constitutive relations is based on a Maxwellian that is perturbed due to the presence of a deviatoric second and full third moment of velocity fluctuations. Because the theory is anisotropic, it can predict the normal stress differences observed in granular shear flows, as well as the evolution to isotropy in an assembly with granular temperatures that are initially highly anisotropic. In order to complement the theory, we employ similar statistical techniques to derive boundary conditions that ensure that the flux of momentum as well as the flux of second moment are balanced at the vibrating boundary. The bumps are hemispheres arranged in regular arrays, and the fluctuating boundary motion is described by an anisotropic Maxwellian distribution function. The bumpiness of the surface may be adjusted by changing the size of the hemispheres, the spacing between the hemispheres in two separate array-directions, and the angle between the two directions. Statistical averaging consistent with the constitutive theory yields the rates at which momentum and full second moment are transferred to the flow. In order to present results in a form that is easy to interpret physically, the statistical parameters that describe the boundary fluctuations are related in a plausible manner to amplitudes and frequencies of sinusoidal vibrations that may differ in three mutually perpendicular directions, and to phase angles that may be adjusted between the three directions of vibration. The focus of the results presented here is on the steady response of unconfined granular assemblies that are thermalized and driven by horizontal bumpy vibrating boundaries. In a first detailed study of the effects of the boundary geometry and boundary motion on the overall response of the assemblies, the anisotropic theory is reduced to a more familiar isotropic form. The resulting theory predicts the manner in which the profiles of isotropic granular temperature and solid volume fraction as well as the uniform velocity and corresponding flow rate vary with spacings between the bumps, angle of the bump-array, energy of vibration, direction of vibration, and phase angles of the vibration. In a second study, we solve the corresponding, but more elaborate, boundary value problem for anisotropic flows induced by anisotropic boundary vibrations. The main focus in presenting these results is on the differences between granular temperatures in three perpendicular directions normal and tangential to the vibrating surface, and how each is affected by the bumpiness of the boundary and the direction of the vibration. In each case, we calculate the corresponding nonuniform velocity profile, solid volume fraction profile, and mass flow rate.
|
54 |
A mechanistic-empirical design model for unbound granular pavement layersTheyse, Hechter Luciën 25 March 2010 (has links)
D.Ing. / Unbound granular material has and is still being used with great success in the construction of road pavements in South Africa and many other countries around the world. Often this material is used in the main structural layers of the pavement with very little protection provided against high traffic induced stresses by way of a surface treatment or thin asphalt concrete layer. The performance of unbound granular pavement layers depend mainly on the level of densification and degree of saturation of the material in addition to the stress levels to which the layers are subjected. The main form of distress of unbound granular layers is the permanent deformation of the layer, either through the gradual deformation or rapid shear failure of the layer. Design engineers need accurate and appropriate design procedures to safeguard the road against such rapid shear failure and to ensure that the road has sufficient structural capacity to support the traffic loading over the structural design period. The recent trend in pavement design has been to move away from empirical design methods towards rational mechanistic-empirical design methods that attempt to relate cause and effect. Although a mechanistic-empirical pavement design method has been available in South Africa since the midseventies, increasing criticism has been levelled against the method recently. The models for characterising the resilient response and shear strength and estimating the structural capacity of unbound material have been of particular concern. The purpose of the research reported in this thesis was therefore to develop an improved mechanistic-empirical design model, reflecting the characteristics and behaviour of unbound granular material. The new design model consists of three components namely a resilient modulus, yield strength and plastic deformation damage model with each model including the effects of the density and moisture content of the material unbound granular where appropriate. The models were calibrated for a range of unbound materials from fine-grained sand and calcrete mixture to commercial crushed stone products using the results from static and dynamic tri-axial tests. An approximation of the suction pressure of partially saturated unbound material was introduced in the yield strength model and was validated with independent matric suction measurements on the sand and calcrete mixture. The yield strength model which is a function of the density and moisture conditions as well as the confinement pressure was calibrated for the individual materials with a high accuracy. A single plastic strain damage model was calibrated for the combined plastic strain data from all the crushed stone materials but a single model could not be calibrated for the plastic strain data of the natural gravels as these materials vary too much in terms of particle size distribution and the properties of the fines found in these materials. The formulation of the plastic strain damage model includes the density and degree of saturation of the material. A single resilient modulus model was calibrated for the combined resilient modulus data from all the materials excluding the data from a limited number of tests during which large plastic strain occurred. The resilient modulus model again ii incorporates the density, degree of saturation and the stress dependency of unbound granular material and is on an effective stress formulation for the bulk stress. Finally, the yield strength, resilient modulus and plastic strain damage models are combined in a mechanistic-empirical design model for partially saturated unbound granular material. Results from the proposed design method seem more realistic than results from the current design model and the model is not as sensitive to variation in the design inputs as the current design model is. In addition to this, the effects of the density and moisture content of the partially saturated, unbound granular material on the resilient response and performance of the material is explicitly included in the formulation of the proposed design model.
|
55 |
Simulations Of Two Dimensional Gravity-Driven And Shear-Driven Rapid Granular FlowsVutukuri, Hanumantha Rao 09 1900 (has links) (PDF)
No description available.
|
56 |
Transport and retention of silver nanoparticles in granular media filtrationKim, Ijung 24 October 2014 (has links)
The increasing use of engineered nanoparticles such as silver nanoparticles (AgNPs) has focused more attention on the transport of nanoparticles in natural and engineered systems. Despite a substantial number of studies on the transport of nanoparticles in groundwater flow conditions, other conditions such as those in granular media filtration in water treatment plant have not been fully explored. This study was designed to investigate the transport of AgNPs in granular media filtration with a relatively high filtration velocity (~2 m/hr) and a low influent AgNP concentration (~100 [mu]g/L). Effects of several physical and chemical parameters on the transport and attachment of AgNPs were examined, focusing on the colloidal filtration theory and particle-particle interaction, respectively. Regarding the transport of AgNPs, four physical parameters (filter depth, filtration velocity, filter media size, and AgNP size) were varied at a fixed chemical condition. Positively charged branched polyethylenimine (BPEI) capped AgNPs were chosen to examine the transport of AgNPs under electrostatically favorable attachment conditions. The effects of filter depth, filtration velocity, and filter media size on transport of AgNPs were adequately described by the well-known colloidal filtration model. However, deviation from the model prediction was apparent as the AgNP size became smaller, implying a possible variation of nanoparticle properties in the smaller size such as 10 nm. In the AgNP attachment study, negatively charged citrate- and polyvinylpyrrolidone (PVP)-capped AgNPs were employed to examine the chemical effects on particle (AgNP)-particle (filter media) interaction. When the ionic strength and ion type in the background water were varied, the attachment of citrate AgNPs followed the DLVO theory. Ca- or Mg-citrate complexation was found to lead to charge neutralization, resulting in a greater AgNP deposition onto the filter media. However, PVP AgNPs were only marginally affected by the electrostatic effect, demonstrating a stronger stabilizing effect by PVP than citrate. When natural organic matter (NOM) was introduced in the background water, the deviation from the DLVO theory was considered primarily due to the steric interaction by NOM coating onto particles. Different amounts of AgNP deposition for different types of NOM suggest the variation of steric effects according to the molecular weight of NOM. The deposition of humic acid-coated AgNPs was similar regardless of the capping agent, indicating the possible displacement of the capping agent by NOM. The electrostatic and steric interactions affected the detachment of AgNPs as well as the attachment of AgNPs. The amount of detachment depended on the depth and width of the secondary energy minimum. Also, the detachment was enhanced with NOM coating, probably due to a weak attachment by the steric effect. However, the hydrodynamic force employed in this study was insufficient to yield a remarkable detachment. Overall, the retention profile was a relatively vertical line (i.e., equal deposition with depth) when the AgNP aggregation was prevented by the electrostatic or steric repulsion, implying homogeneous AgNP capture throughout the filter bed. On the other hand, ripening (the capture of particles by attraction to previously retained particles) was favored at the top of the filter bed when the AgNP aggregation was allowable. / text
|
57 |
Laminar fluid flow through unconsolidated beds of spherical and non-spherical particlesBish, G. M. January 1987 (has links)
No description available.
|
58 |
Well-posed continuum modelling of granular flowsBarker, Thomas January 2017 (has links)
Inertial granular flows lie in a region of parameter space between quasi-static and collisional regimes. In each of these phases the mechanisms of energy dissipation are often taken to be the defining features. Frictional contacts between grains and the transmission of energy through co-operative force chains dominate slowly sheared flows. In the opposite extreme infrequent high-energy collisions are responsible for dissipation in so-called gaseous granular flows. Borrowing from each of these extremes, it is postulated that during liquid-like flow, grain energy is transferred through frequent frictional interactions as the particles rearrange. This thesis focuses on the μ(I)-rheology which generalises the simple Coulomb picture, where greater normal forces lead to greater tangential friction, by including dependence on the inertial number I, which reflects the frequency of grain rearrangements. The equations resulting from this rheology, assuming that the material is incompressible, are first examined with a maximal-order linear stability analysis. It is found that the equations are linearly well-posed when the inertial number is not too high or too low. For inertial numbers in which the equations are instead ill-posed numerical solutions are found to be grid-dependent with perturbations growing unboundedly as their wavelength is decreased. Interestingly, experimental results also diverge away from the original μ(I) curve in the ill-posed regions. A generalised well-posedness analysis is used alongside the experimental findings to suggest a new functional form for the curve. This is shown to regularise numerical computations for a selection of inclined plane flows. As the incompressibility assumption is known to break down more drastically in the high-I and low-I limits, compressible μ(I) equations are also considered. When the closure of these equations takes the form suggested by critical state soil mechanics, it is found that the resultant system is well-posed regardless of the details of the deformation. Well-posed equations can also be formed by depth-averaging the μ(I)-rheology. For three-dimensional chute flows experimental measurements are captured well by the depth-averaged model when the flows are shallow. Furthermore, numerical computations are much less expensive than those with the full μ(I) system.
|
59 |
Aggregation and pattern formation in charged granular gasesSingh, Chamkor 02 September 2019 (has links)
No description available.
|
60 |
Load settlement behaviour of granular pilesBalaam, Nigel P January 1978 (has links)
Doctor of Philosophy / In this thesis an examination is made of the vibro-replacement technique for the stabilisation of cohesive soils. Improvement is achieved by the formation of stiffer columns of granular material within the soil deposit using a large cylindrical vibrator referred to as a vibroflot. Granular piles (also termed stone columns) are used either singly or in small groups to supoort isolated footings or large numbers are installed in a regular array to support widespread loads. Each of these modes of application are investigated.
|
Page generated in 0.0735 seconds