• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quintas do Douro-as arquitecturas do vinho do Porto

Ferreira, Natália Fauvrelle January 1999 (has links)
No description available.
2

The detection of mycoviral sequences in grapevine using next-generation sequencing

Espach, Yolandi 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Metagenomic studies that make use of next-generation sequencing (NGS) generate large amounts of sequence data, representing the genomes of multiple organisms of which no prior knowledge is necessarily available. In this study, a metagenomic NGS approach was used to detect multiple novel mycoviral sequences in grapevine phloem tissue. Individual sequencing libraries of doublestranded RNA (dsRNA) from two grapevine leafroll diseased (GLD) and three shiraz diseased (SD) vines were sequenced using an Illumina HiScanSQ instrument. Over 3.2 million reads were generated from each of the samples and these reads were trimmed and filtered for quality before being de novo assembled into longer contigs. The assembled contigs were subjected to BLAST (Basic Local Alignment Search Tool) analyses against the NCBI (National Centre for Biotechnology Information) database and classified according to database sequences with which they had the highest identity. Twenty-six putative mycovirus species were identified, belonging to the families Chrysoviridae, Endornaviridae, Narnaviridae, Partitiviridae and Totiviridae. Two of the identified mycoviruses, namely grapevine-associated chrysovirus (GaCV) and grapevine-associated mycovirus 1 (GaMV-1) have previously been identified in grapevine while the rest appeared to be novel mycoviruses not present in the NCBI database. Primers were designed from the de novo assembled mycoviral sequences and used to screen the grapevine dsRNA used for sequencing as well as endophytic fungi isolated from the five sample vines. Only two mycoviruses, related to sclerotinia sclerotiorum partitivirus S and chalara elegans endornavirus 1 (CeEV-1), could be detected in grapevine dsRNA and in fungus isolates. In order to validate the presence of mycoviruses in grapevine phloem tissue, two additional sequencing runs, using an Illumina HiScanSQ and an Applied Biosystems (ABI) SOLiD 5500xl instrument respectively, were performed. These runs generated more and higher quality sequence data than the first sequencing run. Twenty-two of the putative mycoviral sequences initially detected were detected in the subsequent sequence datasets, as well as an additional 29 species not identified in the first HiScanSQ sequence datasets. The samples harboured diverse mycovirus populations, with as many as 19 putative species identified in a single vine. This indicates that the complete virome of diseased grapevines will include a high number of mycoviruses. Additionally, the complete genome of a novel endornavirus, for which we propose the name grapevine endophyte endornavirus (GEEV), was assembled from one of the second HiScanSQ sequence datasets. This is the first complete genome of a mycovirus detected in grapevine. Grapevine endophyte endornavirus has the highest sequence similarity to CeEV-1 and is the same virus that was previously detected in fungus isolates using the mycovirus primers. The virus was detected in two fungus isolates, namely Stemphylium sp. and Aureobasidium pullulans, which is of interest since mycoviruses are not known to be naturally associated with two distinctly different fungus genera. Mycoviral sequence data generated in this study can be used to further investigate the diversity and the effect of mycoviruses in grapevine. / AFRIKAANSE OPSOMMING: Metagenomiese studies, wat gebruik maak van volgende-generasie volgordebepalingstegnologie, het die vermoë om die genetiese samestelling van veelvoudige onbekende organismes te bepaal deurdat dit groot hoeveelhede data genereer. Die bogenoemde tegniek was in hierdie studie aangewend om aantal nuwe mikovirusse in die floëem weefsel van wingerd te identifiseer. Dubbelstring-RNS was gesuiwer vanuit twee druiwestokke met rolbladsiekte en drie met shirazsiekte en Illumina HiScanSQ instrument is gebruik om meer as 3.2 miljoen volgorde fragmente te genereer van elk van die monsters. Lae-kwaliteit volgordes was verwyder en die oorblywende kort volgorde fragmente was saamgestel om langer konstrukte te vorm wat met behulp van BLAST soektogte teen die NCBI databasis geïdentifiseer kon word. Ses-en-twintig mikovirus spesies, wat aan die families Chrysoviridae, Endornaviridae, Narnaviridae, Partitiviridae en Totiviridae behoort, was geïdentifiseer. Twee van die geïdentifiseerde mikovirusse, naamlik grapevine-associated chrysovirus (GaCV) en grapevine-associated mycovirus 1 (GaMV-1), was voorheen al in wingerd gekry terwyl die res nuwe mikovirusse is wat tans nie in die NCBI databasis voorkom nie. Inleiers was ontwerp vanaf die saamgestelde mikovirus basisvolgordes en gebruik om wingerd dubbelstring-RNS sowel as swamme wat vanuit die wingerd geïsoleer is te toets vir die teenwoordigheid van hierdie mikovirusse. Slegs twee mikovirusse, wat onderskeidelik verwant is aan sclerotinia sclerotiorum partitivirus S en chalara elegans endornavirus 1 (CeEV-1), kon deur middel van die inleiers in wingerd en swam isolate geïdentifiseer word. Twee addisionele volgordebepalingsreaksies, wat gebruik gemaak het van die Illumina HiScanSQ en ABI SOLiD 5500xl volgordebepalingsplatforms, was gebruik om die teenwoordigheid van mikovirusse in wingerd te bevestig. Groter hoeveelheid volgorde fragmente was geprodusser wat ook van hoër gehalte was as dié van die eerste volgordebepalingsreaksie. Twee-en-twintig mikovirus spesies kon weer geïdentifiseer word, sowel as 29 spesies wat nie in die eerste HiScanSQ basisvolgorde datastelle gevind was nie. Die wingerdstokke wat in hierdie studie ondersoek was, het hoë diversiteit van mikovirusse bevat aangesien daar tot 19 mikovirus spesies in enkele wingerdstok geïdentifiseer was. Dit is aanduiding dat volledige virus profiele van siek wingerdstokke aantal mikovirusse sal insluit. Die vollengte genoomvolgorde van voorheen onbekende endornavirus was saamgestel vanuit een van die tweede HiScanSQ volgorde datastelle. Dit is die eerste mikovirus wat in wingerd gevind word waarvan die volledige genoomvolgorde bepaal is en ons stel die naam grapevine endophyte endornavirus (GEEV) voor vir hierdie virus. Grapevine endophyte endornavirus is die naaste verwant aan CeEV-1 en is dieselfde virus wat voorheen in wingerd dubbelstring-RNS en swam isolate gevind was deur middel van die mikovirus inleiers. Swam isolate waarin GEEV gevind is, was geïdentifiseer as Stemphylium sp. en Aureobasidium pullulans. Dit is van belang dat GEEV in twee swam isolate gevind is wat aan verskillende genusse behoort aangesien hierdie verskynsel nog nie voorheen in die natuur gevind is nie. Mikovirus nukleiensuurvolgordes wat in hierdie studie bepaal was kan gebruik word in toekomstige studies om die verskeidenheid en impak van mikovirusse in wingerd verder te ondersoek. / National Research Foundation (NRF) / Stellenbosch University
3

Enhancing ecosystem services in vineyards to improve the management of Botrytis cinerea

Jacometti, Marco Alexander Azon January 2007 (has links)
Organic mulches and cover crops mulched in situ were assessed for their effects on B. cinerea primary inoculum and disease levels in inflorescences at flowering and/or bunches at harvest. Organic mulches were used to enhance biological degradation of vine debris to reduce levels of B. cinerea primary inoculum the following season. Four mulch types (anaerobically and aerobically fermented marc (grape pressings), inter-row grass clippings and shredded office paper) were applied under ten-year-old Riesling vines in a ten-replicate randomized block design in New Zealand over two consecutive years. Plastic mesh bags, each containing naturally infected vine debris, were placed under vines on bare ground (control) and at the soil-mulch interface, in winter (July) 2003 and 2004. In each year, half the bags were recovered at flowering (December) and the remainder at leaf plucking (February), for assessment of B. cinerea sporulation from the vine debris and debris degradation rate. Bait lamina probes, which measure soil biological activity, were placed in the soil-mulch interface three weeks before each of the two bag-recovery dates in both years and were then removed and assessed at the same times as were the bags. All mulches led to a reduction in B. cinerea sporulation. This reduction was significantly correlated with elevated rates of vine debris decomposition and increased soil biological activity. Over both years, compared with the controls, all treatments gave a 3-20-fold reduction in B. cinerea sporulation, a 1.6-2.6-fold increase in vine debris degradation and in the two marc and the paper treatments, a 1.8-4-fold increase in activity of soil organisms. The mulches also altered vine characteristics and elevated their resistance to B. cinerea through changes to the soil environment. Functional soil biological activity, as measured by Biolog Ecoplates and bait lamina probes, was increased 2-4 times in the two marc and paper treatments, compared with the control, an effect relating to the elevated soil moisture and reduced temperature fluctuations under these mulches. Soil nutrient levels and the C:N ratios were also affected in these treatments. The mulched paper lowered vine canopy density by up to 1.4 times that of the other treatments, an effect which probably led to elevated light penetration into the canopy and consequent increased canopy temperature, photosynthesis and lowered canopy humidity. These changes to soil and vine characteristics increased grape skin strength by up to 10% in the paper treatment and sugar concentrations by 1.2-1.4 °Brix in the two marc and paper treatments. The severity of B. cinerea infections in the anaerobic marc, aerobic marc and paper treatments were reduced to 12%, 3% and 2.2% of the control, respectively, in field assessments averaged over two consecutive harvests. Cover crops mulched in situ had similar effects to those of the organic mulches, increasing soil biological activity and reducing B. cinerea primary inoculum and the severity of B. cinerea infection in grapes at harvest (2006). Inter-row phacelia and ryegrass were mulched in winter 2005 and compared with a bare ground control, under 10-year-old Chardonnay vines in a ten-replicate randomized block design. Functional soil biological activity increased by 1.5-4.5 times in the two cover crop treatments compared with the control, an effect possibly related to elevated soil moisture in these treatments. This increase in soil moisture and soil biological activity increased vine debris degradation, reduced B. cinerea primary inoculum on the debris and decreased B. cinerea severity at flowering (December 2005) and harvest (April 2006). These results show the potential of organic mulches and cover crops mulched in situ to enhance soil ecosystem services and improve the sustainability of viticultural practices.
4

Enhancing ecosystem services in vineyards to improve the management of Botrytis cinerea

Jacometti, Marco Alexander Azon January 2007 (has links)
Organic mulches and cover crops mulched in situ were assessed for their effects on B. cinerea primary inoculum and disease levels in inflorescences at flowering and/or bunches at harvest. Organic mulches were used to enhance biological degradation of vine debris to reduce levels of B. cinerea primary inoculum the following season. Four mulch types (anaerobically and aerobically fermented marc (grape pressings), inter-row grass clippings and shredded office paper) were applied under ten-year-old Riesling vines in a ten-replicate randomized block design in New Zealand over two consecutive years. Plastic mesh bags, each containing naturally infected vine debris, were placed under vines on bare ground (control) and at the soil-mulch interface, in winter (July) 2003 and 2004. In each year, half the bags were recovered at flowering (December) and the remainder at leaf plucking (February), for assessment of B. cinerea sporulation from the vine debris and debris degradation rate. Bait lamina probes, which measure soil biological activity, were placed in the soil-mulch interface three weeks before each of the two bag-recovery dates in both years and were then removed and assessed at the same times as were the bags. All mulches led to a reduction in B. cinerea sporulation. This reduction was significantly correlated with elevated rates of vine debris decomposition and increased soil biological activity. Over both years, compared with the controls, all treatments gave a 3-20-fold reduction in B. cinerea sporulation, a 1.6-2.6-fold increase in vine debris degradation and in the two marc and the paper treatments, a 1.8-4-fold increase in activity of soil organisms. The mulches also altered vine characteristics and elevated their resistance to B. cinerea through changes to the soil environment. Functional soil biological activity, as measured by Biolog Ecoplates and bait lamina probes, was increased 2-4 times in the two marc and paper treatments, compared with the control, an effect relating to the elevated soil moisture and reduced temperature fluctuations under these mulches. Soil nutrient levels and the C:N ratios were also affected in these treatments. The mulched paper lowered vine canopy density by up to 1.4 times that of the other treatments, an effect which probably led to elevated light penetration into the canopy and consequent increased canopy temperature, photosynthesis and lowered canopy humidity. These changes to soil and vine characteristics increased grape skin strength by up to 10% in the paper treatment and sugar concentrations by 1.2-1.4 °Brix in the two marc and paper treatments. The severity of B. cinerea infections in the anaerobic marc, aerobic marc and paper treatments were reduced to 12%, 3% and 2.2% of the control, respectively, in field assessments averaged over two consecutive harvests. Cover crops mulched in situ had similar effects to those of the organic mulches, increasing soil biological activity and reducing B. cinerea primary inoculum and the severity of B. cinerea infection in grapes at harvest (2006). Inter-row phacelia and ryegrass were mulched in winter 2005 and compared with a bare ground control, under 10-year-old Chardonnay vines in a ten-replicate randomized block design. Functional soil biological activity increased by 1.5-4.5 times in the two cover crop treatments compared with the control, an effect possibly related to elevated soil moisture in these treatments. This increase in soil moisture and soil biological activity increased vine debris degradation, reduced B. cinerea primary inoculum on the debris and decreased B. cinerea severity at flowering (December 2005) and harvest (April 2006). These results show the potential of organic mulches and cover crops mulched in situ to enhance soil ecosystem services and improve the sustainability of viticultural practices.

Page generated in 0.2125 seconds