31 |
An enforced cooperation : understanding scientific assessments in adversarial polities through Quebec shale gas policymaking, 2010-2014Harvey, Alexandre 07 1900 (has links)
Les biotechnologies, le réchauffement climatique, les ressources naturelles et la gestion des écosystèmes sont tous représentatifs de la “nouvelle politique de la nature” (Hajer 2003), un terme englobant les enjeux marqués par une grande incertitude scientifique et un encadrement réglementaire inadapté aux nouvelles réalités, suscitant de fait un conflit politique hors du commun. Dans l'espoir de diminuer ces tensions et de générer un savoir consensuel, de nombreux gouvernements se tournent vers des institutions scientifiques ad hoc pour documenter l'élaboration des politiques et répondre aux préoccupations des partie-prenantes. Mais ces évaluations scientifiques permettent-elles réellement de créer une compréhension commune partagée par ces acteurs politiques polarisés? Alors que l'on pourrait croire que celles-ci génèrent un climat d'apprentissage collectif rassembleur, un environnement politique conflictuel rend l'apprentissage entre opposant extrêmement improbable. Ainsi, cette recherche documente le potentiel conciliateur des évaluation scientifique en utilisant le cas des gaz de schiste québécois (2010-2014). Ce faisant, elle mobilise la littérature sur les dimensions politiques du savoir et de la science afin de conceptualiser le rôle des évaluations scientifiques au sein d'une théorie de la médiation scientifique (scientific brokerage). Une analyse de réseau (SNA) des 5751 références contenues dans les documents déposés par 268 organisations participant aux consultations publiques de 2010 et 2014 constitue le corps de la démonstration empirique. Précisément, il y est démontré comment un médiateur scientifique peut rediriger le flux d'information afin de contrer l'incompatibilité entre apprentissage collectif et conflit politique. L'argument mobilise les mécanismes cognitifs traditionnellement présents dans la théorie des médiateurs de politique (policy broker), mais introduit aussi les jeux de pouvoir fondamentaux à la circulation de la connaissance entre acteurs politiques. / Biotechnology, climate change, natural resources, and ecosystem management are all representative of the “new politics of nature” (Hajer 2003), a term encompassing policy issues with high scientific uncertainties, unadapted regulatory regimes, and acute political conflict. In the hope of diminishing these tensions and generating a consensual understanding, several governments mandated ad hoc scientific institutions to document policymaking and answer stakeholder’s concerns. But do those scientific assessments really help to generate a shared understanding between otherwise polarized policy actors? While it would be possible that these create inclusive collective learning dynamics, policy learning has been shown as being extremely unlikely among competing policy actors. Accordingly, this research documents the conciliatory power of scientific assessments using the Quebec shale gas policymaking case (2010–2014). In doing so, it mobilizes the literature stressing the political nature of science to conceptualize scientific assessment in light of a scientific brokerage theory. Empirically, the research uses Social Network Analysis to unravel the collective learning dynamics found in two information networks built from the 5751 references found in the advocacy and technical documents published by 268 organizations during two public consultations. Precisely, findings demonstrate that scientific brokerage can redirect information flows to counteract the divide between collective learning and political conflict. The argument mobilizes cognitive mechanisms traditionally found in policy brokerage theory, but also introduces often forgotten power interplays prominent in policy-related knowledge diffusion.
|
32 |
Dynamic Network Modeling from Temporal Motifs and Attributed Node ActivityGiselle Zeno (16675878) 26 July 2023 (has links)
<p>The most important networks from different domains—such as Computing, Organization, Economic, Social, Academic, and Biology—are networks that change over time. For example, in an organization there are email and collaboration networks (e.g., different people or teams working on a document). Apart from the connectivity of the networks changing over time, they can contain attributes such as the topic of an email or message, contents of a document, or the interests of a person in an academic citation or a social network. Analyzing these dynamic networks can be critical in decision-making processes. For instance, in an organization, getting insight into how people from different teams collaborate, provides important information that can be used to optimize workflows.</p>
<p><br></p>
<p>Network generative models provide a way to study and analyze networks. For example, benchmarking model performance and generalization in tasks like node classification, can be done by evaluating models on synthetic networks generated with varying structure and attribute correlation. In this work, we begin by presenting our systemic study of the impact that graph structure and attribute auto-correlation on the task of node classification using collective inference. This is the first time such an extensive study has been done. We take advantage of a recently developed method that samples attributed networks—although static—with varying network structure jointly with correlated attributes. We find that the graph connectivity that contributes to the network auto-correlation (i.e., the local relationships of nodes) and density have the highest impact on the performance of collective inference methods.</p>
<p><br></p>
<p>Most of the literature to date has focused on static representations of networks, partially due to the difficulty of finding readily-available datasets of dynamic networks. Dynamic network generative models can bridge this gap by generating synthetic graphs similar to observed real-world networks. Given that motifs have been established as building blocks for the structure of real-world networks, modeling them can help to generate the graph structure seen and capture correlations in node connections and activity. Therefore, we continue with a study of motif evolution in <em>dynamic</em> temporal graphs. Our key insight is that motifs rarely change configurations in fast-changing dynamic networks (e.g. wedges intotriangles, and vice-versa), but rather keep reappearing at different times while keeping the same configuration. This finding motivates the generative process of our proposed models, using temporal motifs as building blocks, that generates dynamic graphs with links that appear and disappear over time.</p>
<p><br></p>
<p>Our first proposed model generates dynamic networks based on motif-activity and the roles that nodes play in a motif. For example, a wedge is sampled based on the likelihood of one node having the role of hub with the two other nodes being the spokes. Our model learns all parameters from observed data, with the goal of producing synthetic graphs with similar graph structure and node behavior. We find that using motifs and node roles helps our model generate the more complex structures and the temporal node behavior seen in real-world dynamic networks.</p>
<p><br></p>
<p>After observing that using motif node-roles helps to capture the changing local structure and behavior of nodes, we extend our work to also consider the attributes generated by nodes’ activities. We propose a second generative model for attributed dynamic networks that (i) captures network structure dynamics through temporal motifs, and (ii) extends the structural roles of nodes in motifs to roles that generate content embeddings. Our new proposed model is the first to generate synthetic dynamic networks and sample content embeddings based on motif node roles. To the best of our knowledge, it is the only attributed dynamic network model that can generate <em>new</em> content embeddings—not observed in the input graph, but still similar to that of the input graph. Our results show that modeling the network attributes with higher-order structures (e.g., motifs) improves the quality of the networks generated.</p>
<p><br></p>
<p>The generative models proposed address the difficulty of finding readily-available datasets of dynamic networks—attributed or not. This work will also allow others to: (i) generate networks that they can share without divulging individual’s private data, (ii) benchmark model performance, and (iii) explore model generalization on a broader range of conditions, among other uses. Finally, the evaluation measures proposed will elucidate models, allowing fellow researchers to push forward in these domains.</p>
|
Page generated in 0.0485 seconds