471 |
Synthesis, Characterization, and Biological uses of Carbon NanoparticlesMarcano Quevedo, Daniela 24 July 2013 (has links)
Many diseases have been associated with oxidative stress (OS) which is caused when the production of reactive oxygen species (ROS), such as superoxide (O2•-) and hydroxyl radical (•OH), overcome the scavenging efficiency of living organisms. It is known that ROS production is worsened during traumas related to ischemic events and subsequent reperfusion in which the treatment with fast and effective antioxidants is critical to prevent cell and tissue damage. PEG-HCCs are carbon nanoparticles that showed O2•- and •OH scavenging properties according to electron paramagnetic resonance (EPR) experiments and peroxyl scavenging properties based on oxygen radical absorbance capacity (ORAC) assays. The O2•- quenching capability was also examined in vivo using a mild traumatic brain injury (mTBI) model complicated with hypotension. As result of the PEG-HCCs treatment, the cerebral blood flow (CBF) was restored while normalizing O2•- and nitric oxide (NO•) levels, primarily in the cerebral vasculature
|
472 |
Effects of the Dielectric Environment on the Electrical Properties of GrapheneAnicic, Rastko January 2013 (has links)
This thesis provides the study of graphene’s electrostatic interaction with the substrate surrounding it. Mathematical models based on current experimental configurations of graphene field-effect transistors (FET) are developed and analyzed. The conductivity and mobility of charge carriers in graphene are examined in the presence of impurities trapped in the substrate near graphene. The
impurities encompass a wide range of possible structures and parameters, including different types of impurities, their distance from graphene, and the spatial correlation between them. Furthermore, we extend our models to analyze the influence of impurities on the fluctuations of the electrostatic
potential and the charge carrier density in the plane of graphene. The results of our mathematical
models are compared with current experimental results in the literature.
|
473 |
Development of a Kinetic Monte Carlo CodePedersen, Daniel January 2013 (has links)
A framework for constructing kinetic monte carlo (KMC) simulations of diffusive events on a lattice was developed. This code was then tested by running simulations of Fe adatom diffusion on graphene and graphene-boron nitride surfaces. The results from these simulations was then used to show that the modeled diffusion adheres to the laws of brownian motion and generates results similar to recent research findings.
|
474 |
Infrared Spectroscopy of Graphene in Ultrahigh Magnetic FieldsBooshehri, Layla 06 September 2012 (has links)
Graphene – a two-dimensional honeycomb lattice of sp2-bonded carbon atoms – possesses unusual zero-gap band structure with linear band dispersions, accommodating photon-like, massless electrons that have exhibited a variety of surprising phenomena, primarily in DC transport, in the last several years. In this thesis dissertation, we investigate graphene’s AC or infrared properties in the presence of an ultrahigh magnetic field, produced by a destructive pulsed method. The linear dispersions of graphene lead to unequally spaced Landau levels in a magnetic field, which we probe through cyclotron resonance (CR) spectroscopy in the magnetic quantum limit. Specifically, using magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we experimentally investigated CR in large-area graphene grown by chemical vapor deposition. Circular-polarization-dependent studies revealed strong p-type doping for as-grown graphene, and the dependence of the CR fields on the radiation wavelength allowed for an accurate determination of the Fermi energy. Upon annealing the sample to remove physisorbed molecules, which shifts the Fermi energy closer to the Dirac point, we made the unusual observation that hole and electron CR emerges in the magnetic quantum limit, even though the sample is still p-type. We theoretically show that this non-intuitive phenomenon is a direct consequence of the unusual Landau level structure of graphene. Namely, if the Fermi energy lies in the n = 0 Landau level, then CR is present for both electron-active and hole-active circular polarizations. Furthermore, if the Fermi level lies in the n = 0 Landau level, the ratio of CR absorption between the electron-active and hole-active peaks allows one to accurately determine the Fermi level and carrier density. Hence, high-field CR studies allow not only for fundamental studies but also for characterization of large-area, low-mobility graphene samples.
|
475 |
Dissolution, processing and fluid structure of graphene and carbon nanotube in superacids: The route toward high performance multifunctional materials.Behabtu, Natnael 06 September 2012 (has links)
Carbon allotropes have taken central stage of nanotechnology in the last two
decades. Today, fullerenes, carbon nanotubes (CNTs), and graphene are essential
building blocks for nanotechnology. Their superlative electrical, thermal and mechanical
properties make them desirable for a number of technological applications
ranging from lightweight strong materials to electrical wires and support for catalysts.
However, transferring the exceptional single molecule properties into macroscopic objects
has presented major challenges.
This thesis demonstrates that carbon nanotubes and graphite dissolve in superacids
and these solution can processed into macroscopic objects. Chapter 2 reviews
neat CNT fiber literature. Specifically, the two main processing methods —solid–
state and solution spinning — are discussed. CNT aspect ratio and fibers structure
are identified as the main variables affecting fiber properties. Chapter 3 shows that
graphite can be exfoliated into single-layer graphene by spontaneous dissolution in
chlorosulfonic acid. The dissolution is general and can be applied to various forms of
graphite, including graphene nanoribbons. Dilute solutions of graphene can be used
to form transparent conductive films. At high concentration, graphene and graphene
nanoribbons in chlorosulfonic acid forms a liquid crystal and can be spun directly
into continuous fibers. Chapter 4 describes a solution–based method to form a thin
CNT network. This network is an ideal specimen support for electron microscopy.
Imaging nanoparticles with atomic resolution and sample preparation from reactive
fluids demonstrate the unique feature of solution–based CNT support compared to
state–of–the–art TEM supports . Chapter 5 describes CNT liquid crystalline phase.
Specifically, CNT nematic droplets shape and merging dynamics are analyzed. Despite
nanotube liquid crystals having been reported in various CNT systems, a number
of anomalies such as low order parameter and spaghetti–like, nematic droplets
are reported. However, CNTs in chlorosulfonic acid show elongated, bipolar droplets
typical of other rod–like molecules. Moreover, their large aspect ratio allows capturing
the transition from homogeneous to bipolar transition expected from scaling
arguments.The equilibrium shape and merging dynamics demonstrate the liquid nature
of CNT liquid crystals. Chapter 6 describes the CNT/chlorosulfonic acid fiber
spinning. The influence of starting material, spinning dope concentration, spin draw
ratio and coagulation on fiber properties is discussed. The linear scaling of fiber
strength with CNT aspect ratio is demonstrated experimentally, once the best properties
from different batches are compared. Moreover, Successful multi–hole spinning
demonstrates the intrinsic scalability of wet spinning to meet the typical production
output of industrial–scale spinning. Chapter 7 compares acid–spun CNT fibers to
other CNTs fibers as well as existing engineered materials. Acid–spun CNT fibers
combine the typical specific strength of high–strength carbon fibers to the thermal
and electrical conductivity of metals. These properties are obtained because of a
highly aligned, dense structure. The combined strength and electrical conductivity
allow acid-spun fibers to be used as structural as well as conducting wire while
the combined electrical and thermal properties allow for exceptional field emission
properties.
In conclusion, we demonstrate that multifunctional properties of carbon nanotubes
that have fuelled much of the research in the past 20 years, can be attained on a
macroscopic level via rational design of fluid–phase processing.
|
476 |
Charge Transport and Transfer at the Nanoscale Between Metals and Novel Conjugated MaterialsWorne, Jeffrey 06 September 2012 (has links)
Abstract Organic semiconductors (OSCs) and graphene are two classes of conjugated materials that hold promise to create flexible electronic displays, high speed transistors, and low-cost solar cells. Crucial to understanding the behavior of these materials is understanding the effects metallic contacts have on the local charge environment. Additionally, characterizing the charge carrier transport behavior within these materials sheds light on the physical mechanisms behind transport. The first part of this thesis examines the origin of the low-temperature, high electric field transport behavior of OSCs. Two chemically distinct OSCs are used, poly-3(hexylthiophene) (P3HT) and 6,13- bis(triisopropyl-silylethynyl) (TIPS) pentacene. Several models explaining the low-temperature behavior are presented, with one using the Tomonaga-Luttinger liquid (TLL) insulator-to-metal transition model and one using a field-emission hopping model. While the TLL model is only valid for 1-dimensional systems, it is shown to work for both P3HT (1D) and TIPS-pentacene (2D), suggesting the TLL model is not an appropriate description of these systems. Instead, a cross-over from thermally-activated hopping to field-emission hopping is shown to explain the data well. The second part of this thesis focuses on the interaction between gold and platinum contacts and graphene using suspended graphene over sub-100 nanometer channels. Contacts to graphene can strongly dominate charge transport and mobility as well as significantly modify the charge environment local to the contacts. Platinum electrodes are discovered to be strong dopants to graphene at short length scales while gold electrodes do not have the same effect. By increasing the separation distance between the electrodes, this discrepancy is shown to disappear, suggesting an upper limit on charge diffusion from the contacts. Finally, this thesis will discuss a novel technique to observe the high-frequency behavior in OSCs using two microwave sources and an organic transistor as a mixer. A theoretical model motivating this technique is presented which suggests the possibility of retrieving gigahertz charge transport phenomena at kilohertz detection frequencies. The current state of the project is presented and discrepancies between devices made with gold and platinum electrodes measured in the GHz regime are discussed.
|
477 |
Functionalized Nanoparticles for Biomedical ApplicationsBryant, Erika 16 September 2013 (has links)
Functionalization of nanoparticles often control the extent of their usage. With this in mind, I have explored methods of creating highly functionalized exfoliated graphite, by way of the Billups-Birch reduction, that can be used in the advancement of nanotechnology (i.e. biomedicine). The method explored the use of sodium as the source for the solvated electron. The results of this method produced exfoliated graphite the same size as graphene and with solubility similar to the substrates attached to it. It was further shown that functionalized graphite with a terminal carboxyl group allowed further synthesis to occur via an elimination-addition reaction after the acyl group was transformed into an acid chloride. This reaction makes it possible to create exfoliated graphite that contains any compound of interest as long as it has an oxygen or nitrogen group that is able to react with the acid chloride. Thus, these products have the potential to be used in biomedicine as drug delivery agents.
|
478 |
Exploration of Chemical Analysis Techniques for Nanoscale SystemsChang, Albert 16 September 2013 (has links)
As the critical dimensions of many devices, especially electronics, continue to become smaller, the ability to accurately analyze the properties at ever smaller scales
becomes necessary. Optical techniques, such as confocal microscopy and various
spectroscopies, have produced a wealth of information on larger length scales, above the
diffraction limit. Scanning probe techniques, such as scanning tunneling microscopy and atomic force microscopy, provide information with an extremely fine resolution, often on the order of nanometers or angstroms. In this document, plasmon coupling is used to generate large signal increases, with clear future applications toward scanning probe optical spectroscopies. A variation on scanning tunneling microscopy is also used to study the surface structure of environmentally interesting nanoparticles. Traditional Raman spectroscopy is used to examine doped graphene, which is becoming a hot material for future electronic applications.
|
479 |
Synthesis of Carbon Nanomaterials and Their Applications in the OilfieldLu, Wei 16 September 2013 (has links)
This dissertation explores the potential applications of nanotechnology in the oilfield including poly(vinyl alcohol) stabilized carbon black nanoparticles for oil exploration and temperature-responsive carbon black nanoparticles for enhanced oil recovery. Also, it describes the rational design of graphene nanoribbons via intercalating reactive metals into multi-walled carbon nanotubes followed by addition of vinyl monomers or haloalkanes. Efficient production and modification of these aforementioned nanomaterials will make them more attractive for applications in the oilfield and electronics materials.
A method is reported for detecting the hydrocarbon in the porous media with stabilized nanoparticles that are capable of efficiently transporting hydrophobic molecules through oil-containing rocks and selectively releasing them when a hydrocarbon is encountered. Nano-sized carbon black was oxidized and then functionalized with poly(vinyl alcohol) via a coupling reaction between the polymer's hydroxyl groups and the carboxylic groups on oxidized carbon black. Breakthrough curves show that poly(vinyl alcohol)-coated oxidized carbon black was stable in synthetic sea brine at room temperature and could carry the 14C-labeled radioactive tracer 2,2ˊ,5,5ˊ-tetrachlorobiphenyl through rocks and then released the tracer upon exposure to hydrocarbon.
Due to the temperature-sensitivity of hydrogen bonds, higher molecular weight poly(vinyl alcohol) was used to improve the stability of carbon black nanoparticles in synthetic sea brine at higher temperatures. After sulfation, high molecular weight poly(vinyl alcohol) could stabilized carbon black nanoparticles in American Petroleum Institute standard brine at high temperatures. Those nanoparticles could efficiently transport mass-tagged probe molecules through a variety of oil-field rock types and selectively released the probe molecules into the hydrocarbon-containing rocks. Those proof-of-concept chemical nanoreporters can potentially be used under conditions commonly observed in the reservoir, and aid in the recovery of oil that remains in place.
Amphiphilic carbon nanoparticles have been prepared that are capable of reversibly transferring across the water/oil interface in a temperature-controlled manner. Nano-sized carbon black was oxidized and then functionalized with amphiphilic diblock polyethylene-b-poly(ethylene glycol) copolymers that were water-soluble at low-to-moderate temperatures but oil-soluble at higher temperatures. The correlation between the phase transfer temperature and the melting temperature of the hydrophobic block of the copolymers and the weight percent of hydrophilic block were investigated. The amphiphilic nanoparticles were used to stabilize oil droplets for demonstrating potential applications in reducing the water/oil interfacial tension, a key parameter in optimizing crude oil extraction from downhole reservoirs.
Graphene nanoribbons free of oxidized surfaces can be prepared in large batches and 100% yield by splitting multi-walled carbon nanotubes with potassium vapor. If desired, exfoliation is attainable in a subsequent step using chlorosulfonic acid. The low-defect density of these GNRs is indicated by their electrical conductivity, comparable to that of graphene derived from mechanically exfoliated graphite. Additionally, cost-effective and potentially industrially scalable, in situ functionalization procedures for preparation of soluble graphene nanoribbons from commercially carbon nanotubes are presented. To make alkane-functionalized graphene nanoribbons, multi-walled carbon nanotubes were intercalated by sodium/potassium alloy under liquid-phase conditions, followed by addition of haloalkanes, while polymer-functionalized graphene nanoribbons were prepared via polymerizing vinyl monomers using potassium-intercalated graphene nanoribbons. The correlation between the splitting of MWCNTs, the intrinsic properties of the intercalants and the degree of graphitization of the starting MWCNTs has also been demonstrated. Those functionalized graphene nanoribbons could have applications in conductive composites, transparent electrodes, transparent heat circuits, and supercapcitors.
|
480 |
Implementation of Hot Electrons in Hybrid Antenna-Graphene StructuresWang, Yumin 16 September 2013 (has links)
Graphene, a one-atom-thick sheet of hexagonally packed carbon atoms, is a novel material with high electron mobility due to its unique linear and gapless electronic band structure. Its broadband absorption and unusual doping properties, along with superb mechanical flexibility make graphene of promising application in optoeletronic devices such as solar cell, ultrafast photodetectors, and terahertz modulators. How- ever, the current performance of graphene-based devices is quite unacceptable owning to serious limitations by its inherently small absorption cross section and low quan- tum efficiency. Fortunately, nanoscale optical antennas, consisting of closely spaced, coupled metallic nanoparticles, have fascinating optical response since the collective oscillation of electrons in them, namely surface plasmons, can concentrate light into a subwavelength regime close to the antennas and enhance the corresponding field considerably. Given that optical antenna have been applied in various areas such as subwavelength optics, surface enhanced spectroscopies, and sensing, they are also able to assist graphene to harvest visible and near-infrared light with high efficiency. Moreover, the efficient production of hot electrons due to the decay of the surface plasmons can be further implemented to modulate the properties of graphene.
Here we choose plasmonic oligomers to serve as optical antenna since they pos- sess tunable Fano resonances, consisting of a transparency window where scattering
is strongly suppressed but absorption is greatly enhanced. By placing them in di- rect contact with graphene sheet, we find the internal quantum efficiency of hybrid antenna-graphene devices achieves up to 20%. Meanwhile, doping effect due to hot electron is also observed in this device, which can be used to optically tune the elec- tronic properties of graphene.
|
Page generated in 0.0471 seconds