• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 286
  • 103
  • 75
  • 36
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1401
  • 334
  • 241
  • 223
  • 195
  • 183
  • 151
  • 137
  • 131
  • 124
  • 115
  • 111
  • 107
  • 84
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

On the Discrete Number of Tree Graphs

Rhodes, Benjamin Robert 22 May 2020 (has links)
We study a generalization of the problem of finding bounds on the number of discrete chains, which itself is a generalization of the Erdős unit distance problem. Given a set of points in Euclidean space and a tree graph consisting of a much smaller number of vertices, we study the maximum possible number of tree graphs which can be represented by a prescribed tree graph. We derive an algorithm for finding tight bounds for this family of problems up to chain bound discrepancy, and give upper and lower bounds in special cases. / Master of Science / We study a generalization of the problem of finding bounds on the number of discrete chains, which itself is a generalization of the Erdős unit distance problem, a famous mathematics problem named after mathematician Paul Erdős. Given a set of points, and a tree graph of a much smaller amount of vertices, we study the maximum possible number of tree graphs which can be represented by a prescribed tree graph. We derive an algorithm for finding tight bounds for this family of problems up to chain bound discrepancy, and give upper and lower bounds in special cases.
112

An Object Oriented Simulator for Conceptual Graphs

Sastry, Kiran Srinivasa 12 May 2001 (has links)
This thesis deals with the design and implementation of an object-oriented simulator for conceptual graphs. Conceptual graphs are a means of representing information and knowledge. In particular, they may be used to represent the behavior of mechanisms. Conceptual graph simulation provides the means for verifying that the conceptual graph model of the system is a proper representation of the mechanism. The motivation for the design of this simulator is to help a conceptual graph model designer overcome the imprecision and ambiguity inherent in the English language. When a person translates an English language specification of a system to a conceptual graph model, the model may be incomplete, owing to semantic gaps in the English language specification. The simulator attempts to help the designer fill in these gaps by pointing out missing concepts and relations needed to simulate the model. This thesis covers the issues involved in designing such a simulator, and the implementation of the simulator in Java. The working of the simulator is demonstrated by simulating sample conceptual graphs. Also, a set of action procedures, and a small library of device schema graphs are created, so that devices may be effectively modeled. / Master of Science
113

Energia laplaciana sem sinal de grafos

Pinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
114

Graph based techniques for measurement of intranet dynamics

Dickinson, Peter January 2006 (has links)
This thesis develops a number of graph-based techniques that are capable of measuring the dynamic behaviour of a network and discusses their application in network management. By representing a computer network as a time series of uniquely labelled graphs, it is possible to measure the degree of change that has occurred between a pair of graphs, and hence the dynamics in a network. Concepts introduced include the median graph, intra- and inter- graph clustering, and hierarchical graph representations. The focus is on producing efficient algorithms and improved measures of network change. It is believed that these graph-based techniques for measuring network dynamics have great potential in network anomaly detection, and thus will improve reliability of enterprise intranets.
115

Entropy and Graphs

Changiz Rezaei, Seyed Saeed January 2014 (has links)
The entropy of a graph is a functional depending both on the graph itself and on a probability distribution on its vertex set. This graph functional originated from the problem of source coding in information theory and was introduced by J. K\"{o}rner in 1973. Although the notion of graph entropy has its roots in information theory, it was proved to be closely related to some classical and frequently studied graph theoretic concepts. For example, it provides an equivalent definition for a graph to be perfect and it can also be applied to obtain lower bounds in graph covering problems. In this thesis, we review and investigate three equivalent definitions of graph entropy and its basic properties. Minimum entropy colouring of a graph was proposed by N. Alon in 1996. We study minimum entropy colouring and its relation to graph entropy. We also discuss the relationship between the entropy and the fractional chromatic number of a graph which was already established in the literature. A graph $G$ is called \emph{symmetric with respect to a functional $F_G(P)$} defined on the set of all the probability distributions on its vertex set if the distribution $P^*$ maximizing $F_G(P)$ is uniform on $V(G)$. Using the combinatorial definition of the entropy of a graph in terms of its vertex packing polytope and the relationship between the graph entropy and fractional chromatic number, we prove that vertex transitive graphs are symmetric with respect to graph entropy. Furthermore, we show that a bipartite graph is symmetric with respect to graph entropy if and only if it has a perfect matching. As a generalization of this result, we characterize some classes of symmetric perfect graphs with respect to graph entropy. Finally, we prove that the line graph of every bridgeless cubic graph is symmetric with respect to graph entropy.
116

Graph based techniques for measurement of intranet dynamics

Dickinson, Peter January 2006 (has links)
This thesis develops a number of graph-based techniques that are capable of measuring the dynamic behaviour of a network and discusses their application in network management. By representing a computer network as a time series of uniquely labelled graphs, it is possible to measure the degree of change that has occurred between a pair of graphs, and hence the dynamics in a network. Concepts introduced include the median graph, intra- and inter- graph clustering, and hierarchical graph representations. The focus is on producing efficient algorithms and improved measures of network change. It is believed that these graph-based techniques for measuring network dynamics have great potential in network anomaly detection, and thus will improve reliability of enterprise intranets.
117

Energia laplaciana sem sinal de grafos

Pinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
118

Energia laplaciana sem sinal de grafos

Pinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
119

Consecutive radio labelings and the Cartesian product of graphs

Niedzialomski, Amanda Jean 01 July 2013 (has links)
For k∈{Z}+ and G a simple connected graph, a k-radio labeling f:VG→Z+ of G requires all pairs of distinct vertices u and v to satisfy |f(u)-f(v)|≥ k+1-d(u,v). When k=1, this requirement gives rise to the familiar labeling known as vertex coloring for which each vertex of a graph is labeled so that adjacent vertices have different "colors". We consider k-radio labelings of G when k=diam(G). In this setting, no two vertices can have the same label, so graphs that have radio labelings of consecutive integers are one extreme on the spectrum of possibilities; graphs that can be labeled with such a labeling are called radio graceful. In this thesis, we give four main results on the existence of radio graceful graphs, which focus on Hamming graphs (Cartesian products of complete graphs) and a generalization of the Petersen graph. In particular, we prove the existence of radio graceful graphs of arbitrary diameter, a result previously unknown. Two of these main results show that, under certain conditions, the tth Cartesian power Gt of a radio graceful graph G is also radio graceful. We will also speak to occasions when Gt is not radio graceful despite G being so, as well as some partial results about necessary and sufficient conditions for a graph G so that Gt is radio graceful.
120

To Dot Product Graphs and Beyond

Bailey, Sean 01 May 2016 (has links)
We will introduce three new classes of graphs; namely bipartite dot product graphs, probe dot product graphs, and combinatorial orthogonal graphs. All of these representations were inspired by a vector representation known as a dot product representation. Given a bipartite graph G = (X, Y, E), the bipartite dot product representation of G is a function ƒ : X ∪ Y → Rk and a positive threshold t such that for any κ ∈ Χ and γ ∈ Υ , κγ ∈ ε if and only if f(κ) · f(γ) ≥ t. The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted bdp(G). We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs. An undirected graph G = (V, E) is a probe C graph if its vertex set can be parti-tioned into two sets, N (nonprobes) and P (probes) where N is independent and there exists E' ⊆ N × N such that G' = (V, E ∪ E) is a C graph. In this dissertation we introduce probe k-dot product graphs and characterize (at least partially) probe 1-dot product graphs in terms of forbidden subgraphs and certain 2-SAT formulas. These characterizations are given for the very different circumstances: when the partition into probes and nonprobes is given, and when the partition is not given. Vectors κ = (κ1, κ2, . . . , κn)T and γ = (γ1, γ2, . . . , γn)T are combinatorially orthogonal if |{i : κiγi = 0}| ≠ 1. An undirected graph G = (V, E) is a combinatorial orthogonal graph if there exists ƒ : V → Rn for some n ∈ Ν such that for any u, υ &Isin; V , uv ∉ E iff ƒ(u) and ƒ(v) are combinatorially orthogonal. These representations can also be limited to a mapping g : V → {0, 1}n such that for any u,v ∈ V , uv ∉ E iff g(u) · g(v) = 1. We will show that every graph has a combinatorial orthogonal representation. We will also state the minimum dimension necessary to generate such a representation for specific classes of graphs.

Page generated in 0.0487 seconds