• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 18
  • 13
  • 12
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 190
  • 32
  • 30
  • 26
  • 25
  • 25
  • 24
  • 23
  • 19
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Energy transfer and grain size effects during the Standard Penetration Test (SPT) and Large Penetration Test (LPT)

Daniel, Christopher Ryan 05 1900 (has links)
The Standard Penetration Test (SPT) is the most widely used in-situ soil test in the world. "Large Penetration Test" (LPT) is a term used to describe any scaled up version of the SPT. Several types of LPT have been developed around the world for the purpose of characterizing gravel deposits, as SPT blow counts are less reliable in gravels than in sands. Both tests suffer from the lack of a reliable means of determining transferred energy. Further, the use of LPT blow counts is generally limited to calculation of equivalent SPT blow counts using correlation factors measured in sands. Variation of LPT blow counts with grain size is assumed to be negligible. This research shows that safety hammer energies can be reliably estimated from measurements of hammer impact velocity for both SPT and LPT. This approach to determining transferred energy is relatively simple, and avoids the primary limitation of existing methods, which is the inability to calibrate the instrumentation. Transferred energies and hammer impact velocities are collected from various sources. These data are used to determine the ratio between the hammer kinetic energy and the transferred energy (energy transfer ratio, ETR), which is found to follow a roughly Normal distribution for the various hammers represented. An assessment of uncertainty is used to demonstrate that an ETR based approach could be superior to existing energy measurement methods. SPT grain size effects have primarily been characterized as the variation of an empirical relative density correlation factor, (CD)SPT, with mean grain size. In this thesis, equivalent (CD)LPT data are back-calculated from measured SPT-LPT correlation factors (CS/L). Results of a numerical study suggest that SPT and LPT grain size effects should be similar and related to the ratio of the sample size to the mean grain size. Based on this observation, trend-lines with the same shape as the (CD)SPT trend-line are established for the back-calculated (CD)LPT data. A method for generating the grain size effect trend-line for LPT is then proposed. These trend lines provide a rational approach to direct interpretation of LPT data, or to improved prediction of equivalent SPT blow counts.
12

The gravel cover and catchment efficiency in the plastic-lined catchment

Kirkland, Larry Allan, January 1969 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona. / Includes bibliographical references.
13

Relationship of gravel filtration to exhibited sediment charge

Jorden, Roger M. January 1962 (has links) (PDF)
Thesis (M.S. - Hydrology)--University of Arizona. / Includes bibliographical references.
14

An application of geographic information system technology to sand and gravel resource planning

Beard, Mary Kate. January 1984 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1984. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 130-134).
15

Energy transfer and grain size effects during the Standard Penetration Test (SPT) and Large Penetration Test (LPT)

Daniel, Christopher Ryan 05 1900 (has links)
The Standard Penetration Test (SPT) is the most widely used in-situ soil test in the world. "Large Penetration Test" (LPT) is a term used to describe any scaled up version of the SPT. Several types of LPT have been developed around the world for the purpose of characterizing gravel deposits, as SPT blow counts are less reliable in gravels than in sands. Both tests suffer from the lack of a reliable means of determining transferred energy. Further, the use of LPT blow counts is generally limited to calculation of equivalent SPT blow counts using correlation factors measured in sands. Variation of LPT blow counts with grain size is assumed to be negligible. This research shows that safety hammer energies can be reliably estimated from measurements of hammer impact velocity for both SPT and LPT. This approach to determining transferred energy is relatively simple, and avoids the primary limitation of existing methods, which is the inability to calibrate the instrumentation. Transferred energies and hammer impact velocities are collected from various sources. These data are used to determine the ratio between the hammer kinetic energy and the transferred energy (energy transfer ratio, ETR), which is found to follow a roughly Normal distribution for the various hammers represented. An assessment of uncertainty is used to demonstrate that an ETR based approach could be superior to existing energy measurement methods. SPT grain size effects have primarily been characterized as the variation of an empirical relative density correlation factor, (CD)SPT, with mean grain size. In this thesis, equivalent (CD)LPT data are back-calculated from measured SPT-LPT correlation factors (CS/L). Results of a numerical study suggest that SPT and LPT grain size effects should be similar and related to the ratio of the sample size to the mean grain size. Based on this observation, trend-lines with the same shape as the (CD)SPT trend-line are established for the back-calculated (CD)LPT data. A method for generating the grain size effect trend-line for LPT is then proposed. These trend lines provide a rational approach to direct interpretation of LPT data, or to improved prediction of equivalent SPT blow counts. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
16

Flume studies of gravel bed surface response to flowing water

Wolcott, John Fredric January 1990 (has links)
Almost all sediment transport equations incorporate the Shields parameter, which is a ratio of the total boundary shear stress as a driving force and the particle weight as a resisting force. Shields (1936) equated particle resistance to entrainment with particle weight, which is proportional to particle diameter, or bed texture. The present work analyses the particle resistance term in the Shields parameter. As the bed material adjusts to a given flow condition, bed stability increases. The arrangement of particles into more stable configurations is here termed geometric structure, and includes the formation of pebble clusters, and imbrication. After an initial surface coarsening, here termed textural structure, particle resistance to movement is a function primarily of geometric structure. The Shields number for entrainment is thus a measure of particle resistance due to both types of bed structure rather than the conventional notion of particle resistance due to particle weight. The response of a mobile bed surface composed of < 8 mm diameter gravels to flowing water was explored in a 6 meter by 0.5 meter flume using four different slopes and various water depths. Corrected bed shear stresses varied between 0.05 and 2.79 Pa. Step increases in discharge with a constant slope caused the bed surface to develop a structure which was more stable at the end of a run than at the beginning. Under these conditions, the Shields number for incipient motion was found to vary between 0.001 and 0.066. This variability can be explained by the degree of geometric structure present. Previous studies, including Shields' work (1936), have implicitly included the effects of geometric structure on incipient motion. Surface coarsening develops with very low flows, but subsequent coarsening in higher flows is minor, with less than 5% increase in median diameter following a 50% increase in bed shear stress. Calculations of Manning's n based on depth, slope, and velocity measurements show an increase in flow resistance as structure develops. The development of a coarse surface layer appears to be limited by flow characteristics near the bed which are in turn modified by the development of structure. Measurements of the area occupied by the largest stones show that they do not cover more than 14% of the surface during maximum coarsening. Froude scaling of the flume data indicates that the time necessary for development of maximum strength is on the order of a month for natural rivers under steady flow conditions. This suggests that gravel river beds are rarely in equilibrium with natural flow conditions. / Arts, Faculty of / Geography, Department of / Graduate
17

Weathering in tertiary gravels, a schist, and a meta-sediment in N.E. Scotland

Koppi, A. J. January 1977 (has links)
The salient points of the thesis are summarised as follows. 1. The first chapter is essentially a review of chemical and mineralogical transformations accompanying the weathering of some primary rock forming minerals, and includes a discussion of feldspars, trioctahedral and dioctahedral mica, quartz, chalcedony, opal, metamorphic, accessory, and opaque minerals, and ferromagnesian minerals. Included therein is a hypothesis for the mechanism of formation and layered structure of hydrobiotite. 2. A brief review of the geology, geomorphology, <and age of weathering in north east Scotland is presented in chapter 2. 3. The geology, field work and laboratory investigations of the weathe~ing in a meta-sediment, a quartz-mica-schist, and the Tertiary gravels at two sites, are presented in chapters 4, 5, 6 and 7 respectively. Some features found are considered to be relic, and formed under previous conditions. The weathering products include 2:1 type and kaolin minerals. 4. Secondary silica in a minute form was found to be common and is referred to as "aphanitic silica". The main optical properties and occurrence have been noted. 5. Secondary deposits of Ti02 (leucoxene) are also common, and because of the great opacity of Ti02, may be very ;caospicuous in thin sections even though actual concentrations are very low. Some of the leucoxene is shown to contain rutile and anatase. The source of much Ti02 may be biotite, and very rarely Ti02 may apparently completely pseudomorph biotite. 6. A comparison of the kaolin minerals (poorly ordered kaolinite, well-crystallised kaolin'ijte,and halloysite) from some sites has been made by a variety of techniques including thin sections, X-ray diffraction, DTA, infrared spectroscopy, chemical intercalation, and electron microscopy. Some problems in the study of these clays are considered, particularly with respect to monomineralic and polymineralic mixtures. It is concluded that there are fundamental differences between the structures of kaolinne and halloysite, other than the occurrence of interlayer water in the natural state of halloysiteamphiboles and pyroxenes (generally), tremo1ite-actino1ite, and accessory minerals in the weathered materials is discussed and summarised. 8. The age of weathering and the contribution of weathering products to contempotary soils is assessed from a consideration of the evidence found and that available. It is concluded that in north east Scotland contemporary weathering has very little effect upon weathered rocks beneath soils
18

Hydrodynamics of gravel bed flows : implication on colmation

Mohajeri, Seyed Hossein January 2015 (has links)
Bottom of the mountainous rivers is generally composed of natural gravels. Flow depth in such rivers is generally shallow, with the ratio of water depth to size of bed materials (known as relative submergence) rarely higher than 20. In this type of flow, gravels intrusion induces significant spatial variation of the flow characteristics near bed region, which is known as roughness layer. The simultaneous effects of natural gravels and water surface cause formation of complicated flow structure which is to some extent different from the flow with high relative submergence (flow with relative submergence higher than 40). Despite abundance of studies in shallow flows, there are only a limited number of studies concerning spatial organization of near bed flow field for such type of flow, with also contradictory results. The spatial organization of near bed turbulent flow characteristics is also important for transport of fine sediment. Transport of fine sediments is generally correlated to the asymmetry of vertical velocity. Asymmetry of vertical velocity also arises from a quasi-cyclic process of upward motion of low-velocity fluid parcels (ejection) and downward motion of high-velocity parcels (sweep), together known as bursting process. Spatial organization of bursting process and asymmetry of vertical velocity in near bed and respect to bed topography has not been inscribed properly. In heterogeneous flows, the use of spatially averaged turbulent transport equations, known as Double Averaged Navier-Stikes equations (DANS), is common. In DANS equations viscous drag, form drag and correlation of spatial fluctuation of time averaged velocities (known as form induced stresses) are explicitly expressed. Despite prevailing usage of DANS equations in study of gravel bed flow, examination of vertical velocity has not been performed appropriately by applying double averaging method. Also, the role of form induced stresses in vertical momentum flux has not been highlighted. In present thesis, Stereoscopic Particle Image Velocimetry at near bed horizontal layer and Digital Particle Image Velocimetry in vertical planes are employed together with laser scanning of bed elevations to study flow field and turbulence structure over a coarse immobile gravel bed in submergence conditions ranges from 5 to 10. Spatial organization of flow characteristics at the near bed region is analyzed respect to bed topography. This analysis is also composed of spatial distribution of bursting process and vertical momentum flux. Moreover, vertical profiles of double averaged turbulent flow characteristics and form induced stresses with different relative submergences are compared. Results show that near bed flow field is characterized by a strip structure induced by secondary currents. Such structure tends to be disrupted by the effect of gravel protrusions. To better analyze the interaction between the flow field and gravel bed protrusions, cross-correlations of different velocity components and bed elevations in a horizontal layer just above gravel crests are computed. These results show that upward and downward flows occur not randomly on the bed, but in correspondence to upstream and downstream side of gravels. Also, turbulent momentum flux is directed downward in the downstream side of gravel crests and it is directed upward in upstream side of gravel crests. This is due to prevalence of ejection and sweep events respectively in upstream and downstream sides of gravel crests. These results are in agreement with formation of separation and reattachment zones around gravel crests. Moreover, spatial distribution of sweep and ejection events are organized in streamwise elongated strips with high and low values which are consistent with presence of secondary currents cells. Results obtained by double averaging method show that relative submergence affects the normalwise double averaged turbulence intensity profiles all along the flow depth, while only a weak effect, limited to the near bed region, is noticed on streamwise double averaged turbulence intensity profiles. Logarithmic law parameterization of double averaged velocity profiles shows that parameters change considerably with relative submergence and, in some cases, no clear log-law region was found. These results challenge application of log-law in such type of flow. Analysis of the vertical velocity shows that far from the bed, vertical turbulence momentum flux is upward, while below gravel crests it is downward. This behavior is resulted by prevalence of ejection events far from the bed and sweep events below gravel crests. Results show that vertical momentum flux resulted by form induced component is not significant, except below gravel crests which are upward in to the water column. A limited number of qualitative observations in the real case of fine sediments presence in the matrix of rough bed is in agreement with the results of turbulent flow characteristics. Sand ribbons are clearly formed due to secondary currents. Also, fine materials are mostly deposited and eroded respectively in downstream and upstream sides of gravel crests. The results of present study show that in general some regions actively participate in transport, while the other regions do not participate in the transport. From this basis, Rouse criterion has been developed by considering spatial variation of vertical momentum flux.
19

Early age delamination in concrete pavements made with gravel aggregates

Liu, Juanyu 02 June 2009 (has links)
Gravel aggregates had been used extensively in the Houston District of Texas Department of Transportation (TxDOT) for continuously reinforced concrete pavements construction for many years. However, some of these pavements have been subject to early age delamination and eventual spalling damage. Therefore, a series of studies funded by TxDOT since the early 1990's has been conducted to gain a better understanding of mechanisms, material properties, and construction practices, and to provide guidelines and recommendations for minimizing early-age delamination in concrete pavements made with gravel aggregates. In this study, a test protocol to measure the bond strength between aggregates and cement mortar was established, and the effects of different material and construction parameters on the bond strength of concrete at early ages using a fractional factorial design were investigated. The significances of each factor to achieve better bonding performance were determined, and the optimum design combination was subsequently chosen and validated. Geometric parameters were proposed to characterize aggregate shape properties relative to bonding performance with the facilitation of the Aggregate Imaging System. A rating system based on utility theory was developed to evaluate the overall contribution of aggregate properties (i.e. physical, geometric, and chemical) to the concrete bonding capability and the feasibility of certain mixture design combinations. As for theoretical representation of the bond strength across the interfacial transition zone, a model of interfacial fracture energy between aggregate and mortar that represents the energy necessary to create a crack along the interface was formulated. This model built the connection between concrete properties at the meso-level (represented by the interfacial fracture energy between aggregate and mortar) and the macro-level (represented by fracture toughness of concrete and significant influencing materials and construction factors). In addition, the moisture effects on stress development of concrete pavements at early ages using field data as inputs were numerically simulated, and a fracture mechanics-based approach was used to predict the occurrence of delamination. A delamination detection protocol for the field was developed to explore the feasibility and potential of utilizing Ground Penetration Radar technology in delamination detection. Research findings from laboratory investigation, field testing, theoretical modeling, and numerical analysis were further validated through field test sections, and the associated framework for delamination guidelines was established.
20

Early age delamination in concrete pavements made with gravel aggregates

Liu, Juanyu 02 June 2009 (has links)
Gravel aggregates had been used extensively in the Houston District of Texas Department of Transportation (TxDOT) for continuously reinforced concrete pavements construction for many years. However, some of these pavements have been subject to early age delamination and eventual spalling damage. Therefore, a series of studies funded by TxDOT since the early 1990's has been conducted to gain a better understanding of mechanisms, material properties, and construction practices, and to provide guidelines and recommendations for minimizing early-age delamination in concrete pavements made with gravel aggregates. In this study, a test protocol to measure the bond strength between aggregates and cement mortar was established, and the effects of different material and construction parameters on the bond strength of concrete at early ages using a fractional factorial design were investigated. The significances of each factor to achieve better bonding performance were determined, and the optimum design combination was subsequently chosen and validated. Geometric parameters were proposed to characterize aggregate shape properties relative to bonding performance with the facilitation of the Aggregate Imaging System. A rating system based on utility theory was developed to evaluate the overall contribution of aggregate properties (i.e. physical, geometric, and chemical) to the concrete bonding capability and the feasibility of certain mixture design combinations. As for theoretical representation of the bond strength across the interfacial transition zone, a model of interfacial fracture energy between aggregate and mortar that represents the energy necessary to create a crack along the interface was formulated. This model built the connection between concrete properties at the meso-level (represented by the interfacial fracture energy between aggregate and mortar) and the macro-level (represented by fracture toughness of concrete and significant influencing materials and construction factors). In addition, the moisture effects on stress development of concrete pavements at early ages using field data as inputs were numerically simulated, and a fracture mechanics-based approach was used to predict the occurrence of delamination. A delamination detection protocol for the field was developed to explore the feasibility and potential of utilizing Ground Penetration Radar technology in delamination detection. Research findings from laboratory investigation, field testing, theoretical modeling, and numerical analysis were further validated through field test sections, and the associated framework for delamination guidelines was established.

Page generated in 0.0598 seconds