• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of particle shape on bedload transport in coarse-bed river channels

Demir, Tuncer January 2000 (has links)
This thesis investigates the influence of bed material shape on sediment transport in gravel-bed rivers. The approach involves a combined series of field and laboratory experiments. Magnetic tracing experiments were carried out at three experimental sites in two Pennine gravel-bed streams. The specific aim of these experiments was to quantify the selective transport of different shapes of coarse river gravel and determine their spatial sorting within a natural stream channel. A total of 900 tracers in three size groups (32- 64 mm, 64-128 mm and greater than 128 mm) and four shape classes (spheres, blades, rod and discs) were prepared for each of the three sites. In die laboratory, tilting table experiments were carried out to clarify the mechanistic behaviour of different particle shapes, sizes and orientations on a variety of artificial and naturally formed bed roughnesses. Using strobe-light photography visualization experiments were undertaken with natural and artificially-moulded gravel-size particles of differing shape, size and weight in order to investigate the influence of shape on settling, grain impact, initial motion and transport paths of gravel-size particles. Results of the magnetic tracing experiments showed that there was both size and shape selectivity in bedload transport. Preferential movement occurred in die small and medium particle size classes with tracers concentrated along the channel thalweg. Sphere-shaped particles were transported the greatest distance and in greatest numbers. Rods also moved preferentially, while discs showed a lesser degree of transport and blades hardly moved at all. Results from the tilting table experiments highlight the importance of roundness as well as particle form and particle orientation in continuing thresholds of entertainment. In terms of size, friction angle was found to depend on the ratio of the diameter of the test particle to be moved to that it rests upon (d/D). Shape and orientation were found to be important parameters influencing friction angles. On a given bed roughness and for a constant size non-spherical test particles showed greater friction angles than spherical ones. A very clear difference was found in friction angle distibutions between sphere, transverse rod and other flat-shaped particles, namely, blades with parallel and transverse orientations, disc, and rod with parallel orientations. Visualisation experiments indicated that shape is an important particle characteristic that has a significant effect on settling rates and also the mode of near bed transport. These effects increase with greater particle sizes. The departure of a particle from a sphere leads to a decrease in its settling velocity, Experiments, across a range of test sizes showed that when compared to a sphere of equivalent weight and density, sphere and rod-shaped particles tend to settle the fastest and move by rolling. Discs and blades showed slower settling rates and, in most instances, moved by sliding. Experiments carried out with irregularly-shaped, natural particles show greater variability in settling behaviour and irregular patterns of motion. For every size group, sphere and rod shaped particles have lower critical angles of initial motion flian blade and disc-shapes. Regardless of shape, greater bed roughness, or decreasing particle size results in an increase in the critical angle for motion.
2

The Accuracy of River Bed Sediment Samples

Petrie, John Eric 19 January 1999 (has links)
One of the most important factors that influences a stream's hydraulic and ecological health is the streambed's sediment size distribution. This distribution affects streambed stability, sediment transport rates, and flood levels by defining the roughness of the stream channel. Adverse effects on water quality and wildlife can be expected when excessive fine sediments enter a stream. Many chemicals and toxic materials are transported through streams by binding to fine sediments. Increases in fine sediments also seriously impact the survival of fish species present in the stream. Fine sediments fill tiny spaces between larger particles thereby denying fish embryos the necessary fresh water to survive. Reforestation, constructed wetlands, and slope stabilization are a few management practices typically utilized to reduce the amount of sediment entering a stream. To effectively gauge the success of these techniques, the sediment size distribution of the stream must be monitored. Gravel bed streams are typically stratified vertically, in terms of particle size, in three layers, with each layer having its own distinct grain size distribution. The top two layers of the stream bed, the pavement and subpavement, are the most significant in determining the characteristics of the stream. These top two layers are only as thick as the largest particle size contained within each layer. This vertical stratification by particle size makes it difficult to characterize the grain size distribution of the surface layer. The traditional bulk or volume sampling procedure removes a specified volume of material from the stream bed. However, if the bed exhibits vertical stratification, the volume sample will mix different populations, resulting in inaccurate sample results. To obtain accurate results for the pavement size distribution, a surface oriented sampling technique must be employed. The most common types of surface oriented sampling are grid and areal sampling. Due to limitations in the sampling techniques, grid samples typically truncate the sample at the finer grain sizes, while areal samples typically truncate the sample at the coarser grain sizes. When combined with an analysis technique, either frequency-by-number or frequency-by-weight, the sample results can be represented in terms of a cumulative grain size distribution. However, the results of different sampling and analysis procedures can lead to biased results, which are not equivalent to traditional volume sampling results. Different conversions, dependent on both the sampling and analysis technique, are employed to remove the bias from surface sample results. The topic of the present study is to determine the accuracy of sediment samples obtained by the different sampling techniques. Knowing the accuracy of a sample is imperative if the sample results are to be meaningful. Different methods are discussed for placing confidence intervals on grid sample results based on statistical distributions. The binomial distribution and its approximation with the normal distribution have been suggested for these confidence intervals in previous studies. In this study, the use of the multinomial distribution for these confidence intervals is also explored. The multinomial distribution seems to best represent the grid sampling process. Based on analyses of the different distributions, recommendations are made. Additionally, figures are given to estimate the grid sample size necessary to achieve a required accuracy for each distribution. This type of sample size determination figure is extremely useful when preparing for grid sampling in the field. Accuracy and sample size determination for areal and volume samples present difficulties not encountered with grid sampling. The variability in number of particles contained in the sample coupled with the wide range of particle sizes present make direct statistical analysis impossible. Limited studies have been reported on the necessary volume to sample for gravel deposits. The majority of these studies make recommendations based on empirical results that may not be applicable to different size distributions. Even fewer studies have been published that address the issue of areal sample size. However, using grid sample results as a basis, a technique is presented to estimate the necessary sizes for areal and volume samples. These areal and volume sample sizes are designed to match the accuracy of the original grid sample for a specified grain size percentile of interest. Obtaining grid and areal results with the same accuracy can be useful when considering hybrid samples. A hybrid sample represents a combination of grid and areal sample results that give a final grain size distribution curve that is not truncated. Laboratory experiments were performed on synthetic stream beds to test these theories. The synthetic stream beds were created using both glass beads and natural sediments. Reducing sampling errors and obtaining accurate samples in the field are also briefly discussed. Additionally, recommendations are also made for using the most efficient sampling technique to achieve the required accuracy. / Master of Science

Page generated in 0.0988 seconds