• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Green Driving Application : Eco Driving

Ahmadi, Lina January 2016 (has links)
Eco-driving has acquired great importance in recent years because it is a way to reduce energy consumption that can be applied to any type of vehicle. However, for these rules to be applied requires a process of continuous learning and motivation. For this reason many eco-driving assistants have emerged. This paper presents Green Driving, a driver safety app for Android that detects inattentive driving behaviors and gives corresponding feedback to drivers, scoring their driving and alerting them in case their behaviors are unsafe.  It’s about changing a person’s driving behavior by providing some kind of advice to the driver.  I have worked on an algorithm that is meant to reduce the fuel consumption of users. The algorithm is deployed in an android application. This application “Green Driving” is aimed at users with cars. It is basically like an assistant, suggesting the user when he should make the right gear changes, when to increase/decrease speed and avoids hard braking and rapid acceleration and etc. It is in order to drive economically, ecologic and in turn save money and safety. This is a smart way of letting a user drive economically and ecologic since almost everyone has an Android smartphone now.
2

Personalised assistance for fuel-efficient driving

Gilman, Ekaterina, Keskinarkaus, Anja, Tamminen, Satu, Pirttikangas, Susanna, Röning, Juha, Riekki, Jukka 18 November 2020 (has links)
Recent advances in technology are changing the way how everyday activities are performed. Technologies in the traffic domain provide diverse instruments of gathering and analysing data for more fuel-efficient, safe, and convenient travelling for both drivers and passengers. In this article, we propose a reference architecture for a context-aware driving assistant system. Moreover, we exemplify this architecture with a real prototype of a driving assistance system called Driving coach. This prototype collects, fuses and analyses diverse information, like digital map, weather, traffic situation, as well as vehicle information to provide drivers in-depth information regarding their previous trip along with personalised hints to improve their fuel-efficient driving in the future. The Driving coach system monitors its own performance, as well as driver feedback to correct itself to serve the driver more appropriately.

Page generated in 0.082 seconds