11 |
Cotton gin compost as an alternative substrate for horticultural crop productionJackson, Brian Eugene, January 2005 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
|
12 |
Optimisation of dry bean (Phaseolus vulgaris L.) seed production under greenhouse conditionsChandhla, Justice 07 November 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc Agric (Agronomy))--University of Pretoria, 2005. / Plant Production and Soil Science / unrestricted
|
13 |
Assessment of co-inoculation of Bradyrhizobium Japonicum and Bacillus subtilis on yield and metabolic profile of Bambara groundnut and cowpea under glasshouse conditionsNelwamondo, Aluwani Mutanwa 01 1900 (has links)
Text in English with abstracts in isiVenda and Sepedi / Bambara groundnut and cowpea are essential legumes that are well adapted to unfavourable environmental conditions and have high dietary values for humans. However, they are under-researched and under-utilised. Thus, there are limited records on yields and metabolic profiling of these leguminous crops co-inoculated with B. japonicum and Bacillus subtilis. Generally, very few studies have reported on the effects of co-inoculation of other plant growth-promoting rhizobacteria and rhizobia strains on leguminous plants. This study therefore assessed the effects of B. subtilis (strain BD233) on germination of Bambara groundnut under different temperature regimes, and evaluated the effects of co-inoculation of B. japonicum and B. subtilis on yields of cowpea under glasshouse conditions. The study also assessed the metabolite profile of the crops using 1H nuclear magnetic resonance (NMR) spectroscopy. The data showed that inoculation of Bacillus subtilis on Bambara groundnut landraces under different temperatures enhanced germination (germination percentage, germination rate indices and plumule length). Furthermore, co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) improved plant yield of cowpea plants. Partial least squares-discriminant analysis (PLS-DA) revealed distinct separations between treatments (co-inoculation of B. japonicum and Bacillus subtilis, inoculation of B. japonicum, uninoculated plus NO3 and zero inoculation) on Bambara groundnut and cowpea plants. The VIP score revealed that co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) resulted in low concentrations of metabolites in Bambara groundnut plants and in contrast, high concentrations of metabolites in cowpea plants. Co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) has a potential of improving yield of both Bambara groundnut and cowpea in sustainable agriculture. The metabolic profile of Bambara groundnut and cowpea subjected to co-inoculation has shown that both crops metabolic composition and profile are highly dependent on co-inoculation. / Phonda na ṋawa ndi mangaṋawa a ndeme ane a kona u tea zwavhuḓi kha nyimele dza vhupo vhune ha si vhe havhuḓi na ndeme ya nṱha ya pfushi kha vhathu. Naho zwo ralo, a hu athu u itwa ṱhoḓisiso dzo linganaho nga hadzo na u sa shumiswa Nga zwenezwo hu na rekhodo dzo pimiwaho nga ha khaṋo na u ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza zwiliṅwa izwi zwa mangaṋawa u khetha na B. japonicum na Bacillus subtilis. Nga u angaredza, ndi ngudo dzi si nngana dzo no vhigwaho nga ha masiandaitwa a khetha nyaluwo ya zwimela zwine zwa ṱuṱuwedza bakitheria dzine dza baḓekanywa na midzi na bakitheria dzine dza shandukisa naiṱirodzheni u vha amonia kha zwimela zwa mangaṋawa. Ngudo heyi nga zwenezwo yo asesa masiandaitwa a B. subtilis (tshiliṅwa tsha BD233) kha mumelo wa phonda nga fhasi ha ndaulo ya thempheretsha dzo fhambanaho, na u ela masiandaitwa a u khetha B. japonicum na B. subtilis kha khaṋo dza phonda na ṋawa nga fhasi ha nyimele ya fhethu hune ha ṱavhiwa zwimela nga fhasi ha tsireledzo kana ndangulo. Ngudo dzo dovha dza ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza zwiliṅwa hu tshi shumiswa 1H maanḓa a u tzwonzwiwa ha nyukiḽia nga eḽekiṱhironiki maginethe (NMR) nga u ṱanganelana ha radiesheni ya eḽekiṱhironiki maginethe. Data yo sumbedza u ḓivhadzwa ha Bacillus subtilis kha tshiliṅwa tshapo tsha phonda fhasi ha thempheretsha dzo fhambanaho u khwinisa mumelo (phesenthedzhi ya mumelo, zwisumbi zwa phimo ya muelo na vhulapfu ha pulumule). U isa phanḓa, u ḓivhadzwa hafhu ha B. japonicum na Bacillus subtilis (tshiliṅwa tsha BD233) khaṋo yo khwiniswaho ya tshiliṅwa kha zwimela zwa ṋawa. Musaukanyo wa u khethekanya zwitatisiṱika (Partial least squares-discriminant analysis) (PLS-DA) wo sumbedza khethekanyo dzo fhambanaho vhukati ha kushumisele (u ḓivhadzwa hafhu ha B.japonicum na Bacillus subtilis, u ḓivhadzwa ha B. japonicum, i songo ḓivhadzwaho hafhu na NO3 na ziro i songo ḓivhadzwa hafhu) kha phonda na zwiliṅwa zwa ṋawa. Tshikoro tsha VIP tsho wanulusa uri u ḓivhadzwa hafhu ha B. japonicum na Bacillus subtilis (kha tshiliṅwa tsha BD233) zwo bveledza mutzwonzwo wa fhasi wa methobolaithisi kha zwiliṅwa zwa phonda na phambano, ya mutzwonzwo wa nṱha wa methobolaithisi kha zwiliṅwa zwa ṋawa. U khetha ha B. japonicum na Bacillus subtilis (kha tshiliṅwa tsha BD233) zwo vha na ndeme ya u khwinisa khaṋo ya vhuvhili hazwo phonda na ṋawa kha vhulimi vhu sa nyeṱhi. U ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza phonda na ṋawa tenda u ḓivhadzwa hafhu ho sumbedza uri vhuvhili ha kubveledzele kwa methaboḽiki ya zwiliṅwa na muelo zwo ḓitika nga maanḓa nga u khetha. / Ditloo tša Bambara ke dipeu tše bohlokwa tšeo di kgonago go phela gabotse go maemo a tikologo yeo e sego ya loka e bile di na le boleng bja godimo bja dijo tšeo di lekanego go batho. Le ge go le bjalo, gona le dinyakišišo tša fase ka tšona le gore ga di šomišwe kudu. Ka gona, go na le direkhoto tše dinnyane ka ga pego ya mehola le tšhomišo ya yona ka ga dibjalo tše tša go dira dipeu tšeo di kopantšhwago le B. japonicum le Bacillus subtilis. Ka kakaretšo, dinyakišišo tše dinnyane kudu di begile ka ga dikhuetšo tša kopantšho ya mehlare e mengwe ya go huetša go gola ga pakteria ya medu (rhizobacteria) le dingangego tša pakteria ya ka gare ga medu (rhizobia) go dibjalo tša dipeu. Nyakišišo ye ka gona e lekotše dikhuetšo tša B. subtilis (strain BD233) go melo ya ditloo tša Bambara ka fase ga maemo a dithempereitšha tša go fapana, le go lekola dikhuetšo tša kopantšho ya B. japonicum le B. subtilis go mehola ya ditloo tša Bambara le dinawa ka fase ga maemo a ntlo ya digalase. Nyakišišo gape e lekotše pego ya tšhomišo ya dibjalo go šomišwa sedirišwa sa go laetša maatlakgogedi sa 1H (NMR). Tshedimošo e bontšhitše gore tsenyo ya Bacillus subtilis go ditloo tša Bambara tša tlwaelo ka fase ga dithempereitšha tša go fapana go kaonafaditše go mela (phesente ya go mela, lebelo la dikelo tša melo le botelele bja kutu ya sebjalo). Gape, kopantšho le B. japonicum le Bacillus subtilis (strain BD233) go kaonafaditše mehola ya dibjalo tša mehlare ya dinawa. Tshekatsheko ya go hwetša tswalano ya dithišu tše pedi (PLS-DS) e utollotše ditlogelano tša go fapana magareng ga mekgwa (kopantšho ya B. japonicum le Bacillus subtilis, tsenyo ya B. japonicum, yeo e sego ya tsenywa le NO3 le tsenyo ya lefeela) go ditloo tša Bambara le dibjalo tša dinawa. Dipoelo tša VIP di utollotše gore kopantšho ya B. japonicum le Bacillus subtilis (strain BD233) e tlišitše dipoelo tša fase tša ditšweletšwa tša dimolekule tša dibjalo tša ditloo tša Bambara e bile gape ge re dira phapanyo, bontšhi bjo bo lego godimo bja ditšweletšwa tša dimolekule ka go dibjalo tša dinawa. Kopantšho ya B. japonicum le Bacillus subtilis (strain BD233) e na le kgonagalo ya go kaonafatša mehola ya bobedi ditloo tša Bambara le dinawa ka go temo ya sa ruri. Seemo sa ditšweletšwa tša ditloo tša Bambara le dinawa tšeo di dirilwe kopantšho se bontšhitše gore bobedi tlhamotšweletšo le seemo sa dibjalo tše di ithekgile kudu mo go kopantšho. / Agriculture and Animal Health / M. Sc. (Agriculture)
|
14 |
The biology and control of certain species of crustacea of the families Oniscidae and Armadillidiidae.Hathaway, Wilfred Bostock 01 January 1947 (has links) (PDF)
No description available.
|
15 |
Needleless shoots and loss of apical dominance in greenhouse-grown loblolly pine (Pinus taeda L.)Peterson, John A. 30 June 2009 (has links)
Loblolly pine that is winter-sown in the greenhouse and spring-outplanted has been observed to exhibit growth abnormalities in the form of multiple apical and needleless shoots. Seedlings that exhibit growth abnormalities are of questionable value in the evaluation of progeny tests. The use growth data from this seedling material could result in biased and erroneous or invalid conclusions about individual tree or family performance.
To determine the causes of growth abnormality development, and to suggest possible remedies, two experiments were initiated. The first experiment examined the effects of raising five Virginia controlled-cross families in two different greenhouses and subsequently outplanting the seedlings on two contrasting sites. The second examined the effects of pre-planting exposure to 0, 4, or 6 weeks of shortened days followed by 0, 400 or 600 hours of chilling and post-planting supplemental water.
Experiment one results indicated that abnormalities were more apparent at the better growing site. Further, pre-planting hardening-off likely increased the dormancy status of the seedlings and somewhat alleviated growth abnormalities. It was determined that families varied in the expression of abnormalities. Abnormalities were only observed during the first summer after outplanting; symptoms were alleviated after overwintering.
Experiment two results indicated that treatments that influenced the dormancy status of the seedlings influenced the development of growth abnormalities. Pre-planting shortened days resulted in increased needles per total stem units for the second flush. Pre-planting chilling and post-planting supplemental water increased apical dominance. / Master of Science
|
16 |
A study of greenhouse production techniques for evergreen disasPienaar, D. 03 1900 (has links)
Thesis (MScAgric (Agronomy)--University of Stellenbosch, 2005. / The seven evergreen Disa species are indigenous to South Africa. These orchids grow on mountain ranges subject to winter rainfall and are found on stream banks, around waterfalls and in other damp areas. Although the Disa genus accommodates more than 130 species, by far the most commonly grown is Disa uniflora and hybrids stemming from this species. Disas have great potential as cut flowers and pot plants, but production techniques need to be further investigated since cultivation methods vary greatly between hobbyists. This study evaluated the effect of N-source, shading, root medium temperature, electrical conductivity (EC), irrigation method, foliar feeding at different plant growth stages and substrate on the growth of evergreen Disa hybrids in a controlled environment. Results showed that Disa plants can be classified as being ammonium tolerant. Disa unidiorosa performed best with 40% of the applied N in the NH4 form, while D.kewensis was more tolerant towards a higher level of NH4 and grew best at 60% NH4. Shading levels (56% and 69%) were compared and did not differ regarding the growth of plants. A cooled root medium was found to have a negative effect on root growth and a positive effect on leaf length. High EC levels produced heavier mother plants with a bigger root:shoot ratio and a bigger stem diameter. Biomass accumulation was the best in plants receiving ‘Drip’ irrigation, compared to ‘Ebb-and-Flood’ irrigation treatments. Plants in the vegetative reproducing stage were more susceptible to leaf abscission and new leaves formed at a low rate compared to small- and potential flowering plants. Where foliar feeding is concerned plants seemed to benefit more by the presence of NH4NO3 than urea. There were no significant differences in root development between substrates in the ‘hardening-off’ phase. ‘Hydroton’ (clay pebbles) was not suitable as substrate for the cultivation of Disa plants. The growth and flowering properties of plants were optimal with sphagnum moss and peat but were negatively affected when the pH of acid peat:sand mixtures were increased. More research is needed before Disas can be cultivated on a commercial scale, while the effect of the treatments on flowering properties has to be investigated.
|
17 |
Evaluation of clean chip residual as an alternative substrate for container-grown plantsBoyer, Cheryl ReNee', Gilliam, Charles Homer, Fain, Glenn Bradley, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 173-188).
|
18 |
Organic matter type affects growth and physiology of native plants planted above-gradeHanes, Scott Burton, Wright, Amy Noelle, January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographical references.
|
19 |
Greenhouse evaluation of maize performance and changes in chemical properties of soil following application of winery solid waste compostsMasowa, Manare Maxson January 2015 (has links)
Thesis (M.Sc.(Soil Science)) -- University of Limpopo, 2015 / Winery solid waste materials namely, wine filter materials (FM), grape marc (berry stalks, skins and seeds) and chopped grapevine pruning canes were composted in heaps through a thermophilic process. The filter materials were mixed with the grape marc and grapevine prunings at five rates (10%, 25%, 50%, 75% and 100%) to produce five composts herein designated as C10FM, C25FM, C50FM, C75FM and C100FM, respectively. A laboratory incubation study was thereafter carried out to determine the nutrient release potential of the composts using two soil types with varying textural characteristics. Each compost was mixed with soil at a rate equivalent to 200 kg N ha-1 and the mineral N, available P and exchangeable K content determined over 42 days incubation period. Results revealed that the composts possess high C content and low C:N ratios; and released significantly higher NH4-N and K concentration relative to un-amended control. The differences in the amount of P mineralised among the five compost treatments were not significant while significantly higher amount of K was mineralised at higher FM mix rates.
The composts were applied to maize cv. SNK2147 on sandy soil in a greenhouse pot study at five rates (5, 10, 20, 40 and 80 t ha-1) to determine their effects on crop growth and yield as well as on selected soil chemical properties. An un-fertilised control and NPK fertiliser treatments were included for comparison. The pots were arranged in a completely randomized design, with each treatment replicated four times. The C50FM, C75FM and C100FM treatments applied at 80 t ha-1 gave significantly higher maize dry matter yield than the NPK fertiliser treatment. Quantitative estimates of the optimum compost rate for dry matter production ranged from 450 to 1842 g pot-1. Application of these composts significantly increased dry matter yield, plant height, stem diameter and the number of functional leaves per plant compared to the un-fertilised control. The K content of shoot from composts treatments exceeded the critical nutritional level of 3.3%. Plant tissue Zn content from C10FM, C25FM and C50FM treatments exceeded the critical nutritional level of 15 mg kg-1 while the residual soil K, Na and Zn contents after crop harvest were significantly increased following compost application. Similarly, the residual P was significantly increased in C25FM, C75FM and C100FM treatments after harvest. In conclusion, application of these composts exerted beneficial effects on maize performance and soil. Field studies under variable conditions are recommended to validate these findings.
Keywords: wine, compost, nutrient release potential, maize, soil chemical properties
|
20 |
Evaluation of municipal solid waste composts for growing greenhouse crops /Lin, Fei-Wen 01 January 1995 (has links) (PDF)
No description available.
|
Page generated in 0.0648 seconds