• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Electrification of Heavy-Duty Trucks : A Grid Impact Analysis of Grid Integration of a High-Power Charging Station

Arvidsson, Maria January 2022 (has links)
The Swedish transport sector will need to undergo a major restructuring to achieve the established climate and environmental goals. The biggest change is that fossil fuels will be phased out and a larger part of the vehicle fleet will be electrified. This study deals with the electrification of heavy-duty trucks and how high-power charging stations affect the local electricity grid. Charging of heavy-duty trucks depends largely on the logistics of the transport system, which reduces the demand flexibility of power. High-power charging entails a risk of increased power peaks, which can affect the bus-voltage profiles, losses and loads on grid components. This thesis has been conducted as general study based on the case with the high-power charging station at Vädermotet in the area Hisingen of Gothenburg. The purpose was to build a generic model of the electricity grid at Hisingen and then investigate the consequences of high-power charging for the grid for two charging scenarios: the first scenario with four ABB Terra 360 chargers, and the second scenario with six ABB Terra 360 chargers and one MCS. The electricity network model and simulations were performed in PSS®SINCAL. The two charging scenarios, as well as the scenario before chargers were installed, were then simulated for three different system-load cases: maximum, average, and low load. The results showed that high-power charging of trucks had the biggest impacts for the voltage profiles during the case of low load. For the medium load and maximum load cases, the effect of the high-power charge decreased. Furthermore, electricity network losses increased for the low load case, but decreased slightly for the average and maximum load case. The reason was a more even load balance between the bus that connected the charging station to the grid and the rest of the network for the average and maximum load cases. In summary, the study indicated that grid implementation of a high-power charging station will have consequences for the local power system. However, the magnitude of the effects is not validated and can therefore only be regarded as indications. The outcome can be partly explained by the assumptions and simplifications of the model compared to the real system.
2

Optimal design of an EV fast charging station coupled with storage in Stockholm

Longo, Luca January 2017 (has links)
Is battery energy storage a feasible solution for lowering the operational costs of electric vehicle fast charging and reducing its impact on local grids? The thesis project aims at answering this question for the Swedish scenario. The proposed solution (fast charging station coupled with storage) is modelled in MATLAB, and its performance is tested in the framework provided by Swedish regulation and electricity tariff structure. The analysis is centred on the economic performance of the system. Its cost-effectiveness is assessed by means of an optimisation algorithm, designed for delivering the optimal control strategy and the required equipment sizing. A mixed-integer linear programming (MILP) formulation is utilised. The configuration and operative costs of conventional fast charging stations are used as a benchmark for the output of the optimisation. Sensitivity analysis is conducted on most relevant parameters: charging load, battery price and tariff structure. The modelling of the charging demand is based on statistics from currently implemented 50 kW DC chargers in Sweden. Overall, results show that with current figures the system may be an economically viable solution for both reducing costs and lowering the impact on the local distribution grid, at least during peak-period pricing. However, sensitivity analysis illustrates how system design and performance are highly dependent on input parameters. Among these, electricity tariff was identified as the most important. Consequently, detailed discussion on the influence of this parameter is conducted. Finally, the study shows how the system is in line with most recent directives proposed by the European Commission.

Page generated in 0.2321 seconds