• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation multi-échelles de la morphologie urbaine à partir de données carroyées de population et de bâti / Multiscale modelling of urban morphology using gridded data

Baro, Johanna 25 March 2015 (has links)
La question des liens entre forme urbaine et transport se trouve depuis une vingtaine d'années au cœur des réflexions sur la mise en place de politiques d'aménagement durable. L'essor de la diffusion de données sur grille régulière constitue dans ce cadre une nouvelle perspective pour la modélisation de structures urbaines à partir de mesures de densités affranchies de toutes les contraintes des maillages administratifs. A partir de données de densité de population et de surface bâtie disponibles à l'échelle de la France sur des grilles à mailles de 200 mètres de côté, nous proposons deux types de classifications adaptées à l'étude des pratiques de déplacement et du développement urbain : des classifications des tissus urbains et des classifications des morphotypes de développement urbain. La construction de telles images classées se base sur une démarche de modélisation théorique et expérimentale soulevant de forts enjeux méthodologiques quant à la classification d'espaces urbains statistiquement variés. Pour nous adapter au traitement exhaustif de ces espaces, nous avons proposé une méthode de classification des tissus urbains par transfert d'apprentissage supervisé. Cette méthode utilise le formalisme des champs de Markov cachés pour prendre en compte les dépendances présentes dans ces données spatialisées. Les classifications en morphotypes sont ensuite obtenus par un enrichissement de ces premières images classées, formalisé à partir de modèles chorématiques et mis à œuvre par raisonnement spatial qualitatif. L'analyse de ces images classées par des méthodes de raisonnement spatial quantitatif et d'analyses factorielles nous a permis de révéler la diversité morphologique de 50 aires urbaines françaises. Elle nous a permis de mettre en avant la pertinence de ces classifications pour caractériser les espaces urbains en accord avec différents enjeux d'aménagement relatifs à la densité ou à la multipolarité / Since a couple of decades the relationships between urban form and travel patterns are central to reflection on sustainable urban planning and transport policy. The increasing distribution of regular grid data is in this context a new perspective for modeling urban structures from measurements of density freed from the constraints of administrative division. Population density data are now available on 200 meters grids covering France. We complete these data with built area densities in order to propose two types of classified images adapted to the study of travel patterns and urban development: classifications of urban fabrics and classifications of morphotypes of urban development. The construction of such classified images is based on theoretical and experimental which raise methodological issues regarding the classification of a statistically various urban spaces. To proceed exhaustively those spaces, we proposed a per-pixel classification method of urban fabrics by supervised transfer learning. Hidden Markov random fields are used to take into account the dependencies in the spatial data. The classifications of morphotypes are then obtained by broadening the knowledge of urban fabrics. These classifications are formalized from chorematique theoretical models and implemented by qualitative spatial reasoning. The analysis of these classifications by methods of quantitative spatial reasoning and factor analysis allowed us to reveal the morphological diversity of 50 metropolitan areas. It highlights the relevance of these classifications to characterize urban areas in accordance with various development issues related to the density or multipolar development
2

Modélisation multi-échelles de la morphologie urbaine à partir de données carroyées de population et de bâti / Multiscale modelling of urban morphology using gridded data

Baro, Johanna 25 March 2015 (has links)
La question des liens entre forme urbaine et transport se trouve depuis une vingtaine d'années au cœur des réflexions sur la mise en place de politiques d'aménagement durable. L'essor de la diffusion de données sur grille régulière constitue dans ce cadre une nouvelle perspective pour la modélisation de structures urbaines à partir de mesures de densités affranchies de toutes les contraintes des maillages administratifs. A partir de données de densité de population et de surface bâtie disponibles à l'échelle de la France sur des grilles à mailles de 200 mètres de côté, nous proposons deux types de classifications adaptées à l'étude des pratiques de déplacement et du développement urbain : des classifications des tissus urbains et des classifications des morphotypes de développement urbain. La construction de telles images classées se base sur une démarche de modélisation théorique et expérimentale soulevant de forts enjeux méthodologiques quant à la classification d'espaces urbains statistiquement variés. Pour nous adapter au traitement exhaustif de ces espaces, nous avons proposé une méthode de classification des tissus urbains par transfert d'apprentissage supervisé. Cette méthode utilise le formalisme des champs de Markov cachés pour prendre en compte les dépendances présentes dans ces données spatialisées. Les classifications en morphotypes sont ensuite obtenus par un enrichissement de ces premières images classées, formalisé à partir de modèles chorématiques et mis à œuvre par raisonnement spatial qualitatif. L'analyse de ces images classées par des méthodes de raisonnement spatial quantitatif et d'analyses factorielles nous a permis de révéler la diversité morphologique de 50 aires urbaines françaises. Elle nous a permis de mettre en avant la pertinence de ces classifications pour caractériser les espaces urbains en accord avec différents enjeux d'aménagement relatifs à la densité ou à la multipolarité / Since a couple of decades the relationships between urban form and travel patterns are central to reflection on sustainable urban planning and transport policy. The increasing distribution of regular grid data is in this context a new perspective for modeling urban structures from measurements of density freed from the constraints of administrative division. Population density data are now available on 200 meters grids covering France. We complete these data with built area densities in order to propose two types of classified images adapted to the study of travel patterns and urban development: classifications of urban fabrics and classifications of morphotypes of urban development. The construction of such classified images is based on theoretical and experimental which raise methodological issues regarding the classification of a statistically various urban spaces. To proceed exhaustively those spaces, we proposed a per-pixel classification method of urban fabrics by supervised transfer learning. Hidden Markov random fields are used to take into account the dependencies in the spatial data. The classifications of morphotypes are then obtained by broadening the knowledge of urban fabrics. These classifications are formalized from chorematique theoretical models and implemented by qualitative spatial reasoning. The analysis of these classifications by methods of quantitative spatial reasoning and factor analysis allowed us to reveal the morphological diversity of 50 metropolitan areas. It highlights the relevance of these classifications to characterize urban areas in accordance with various development issues related to the density or multipolar development
3

Ανάπτυξη και αξιολόγηση μεθοδολογίας για τη δημιουργία πλεγματικών (gridded) ισοτοπικών δεδομένων

Σαλαμαλίκης, Βασίλειος 20 April 2011 (has links)
Διάφορες κλιματολογικές, υδρολογικές και περιβαλλοντικές μελέτες απαιτούν ακριβή γνώση της χωρικής κατανομής των σταθερών ισοτόπων του υδρογόνου και του οξυγόνου στον υετό. Δεδομένου ότι ο αριθμός των σταθμών συλλογής δειγμάτων υετού για ισοτοπική ανάλυση είναι μικρός και όχι ομογενώς κατανεμημένος σε πλανητικό επίπεδο, η πλανητκή κατανομή των σταθερών ισοτόπων μπορεί να υπολογισθεί μέσω της δημιουργίας πλεγματικών ισοτοπικών δεδομένων, για τη δημιουργία των οποίων έχουν προταθεί διάφορες μέθοδοι. Ορισμένες χρησιμοποιούν εμπειρικές σχέσεις και γεωστατιστικές μεθόδους ώστε να ελαχιστοποιήσουν τα σφάλματα λόγω παρεμβολής. Στην εργασία αυτή γίνεται μια προσπάθεια να δημιουργηθούν βάσεις πλεγματικών δεδομένων της ισοτοπικής σύστασης του υετού με ανάλυση 10΄ × 10΄ για την περιοχή της Κεντρικής και Ανατολικής Μεσογείου. Προσδιορίζονται στατιστικά πρότυπα λαμβάνοντας υπ’ όψιν γεωγραφικές και μετεωρολογικές παραμέτρους, ως ανεξάρτητες μεταβλητές. Η αρχική μεθοδολογία χρησιμοποιεί μόνο το υψόμετρο της περιοχής και το γεωγραφικό της πλάτος ως ανεξάρτητες μεταβλητές. Επειδή η ισοτοπική σύσταση εξαρτάται και από το γεωγραφικό μήκος προστέθηκαν στα υφιστάμενα πρότυπα, εκτός των γεωγραφικών μεταβλητών και μετεωρολογικές. Προτείνεται σειρά προτύπων τα οποία περιλαμβάνουν είτε ορισμένες είτε συνδυασμό αυτών των παραμέτρων. Η αξιολόγηση των προτύπων γίνεται με εφαρμογή των μεθόδων Thin Plate Splines (TPSS) και Ordinary Kriging (ΟΚ). / Several climatic, hydrological and environmental studies require the accurate knowledge of the spatial distribution of stable isotopes in precipitation. Since the number of rain sampling stations for isotope analysis is small and not evenly distributed around the globe, the global distribution of stable isotopes can be calculated via the production of gridded isotopic data sets. Several methods have been proposed for this purpose. Some of them use empirical equations and geostatistical methods in order to minimize eventual errors due to interpolation. In this work a methodology is proposed for the development of 10΄ × 10΄ gridded isotopic data of precipitation in Central and Eastern Mediterranean. Statistical models are developed taking into account geographical and meteorological parameters as independent variables. The initial methodology takes into account only the altitude and latitude of an area. Since however the isotopic composition of precipitation depends also on longitude, the existing models have been modified by adding meteorological parameters as independent variables also. A series of models is proposed taking into account some or a combination of the above mentioned variables. The models are validated using the Thin Plate Smoothing Splines (TPSS) and the Ordinary Kriging (OK) methods.
4

Μέθοδοι εξαγωγής και ψηφιακής επεξεργασίας περιβαλλοντικών σημάτων και εικόνων – Εφαρμογή στην αυτόματη ταξινόμηση χαρτών καιρού / Export methods and digital processing of environmental signals and images – Implementation of the automatic classification of weather maps

Ζάγουρας, Αθανάσιος 07 June 2013 (has links)
Η συνοπτική ταξινόμηση των συστημάτων καιρού αφορά πληθώρα περιβαλλοντικών εφαρμογών. Προσφάτως, η γνωστική περιοχή για την οποία η συνοπτική ταξινόμηση έχει βαρύνουσα σημασία είναι αυτή της ατμοσφαιρικής ρύπανσης. Η γνώση της συνοπτικής κλιματολογίας μιας περιοχής, επιτρέπει την πρόγνωση και ενδεχομένως την αποφυγή επεισοδίων ρύπανσης, τα οποία οφείλονται είτε σε τοπικές πηγές είτε στην μεταφορά ρύπων. Η γνώση αυτή ενισχύεται σημαντικά μέσω της κατηγοριοποίησης (ταξινόμησης) των συνοπτικών καταστάσεων που επικρατούν σε μία δεδομένη περιοχή. Τα τελευταία χρόνια έχουν γίνει προσπάθειες «αυτόματης», μη εμπειρικής, ταξινόμησης με την χρήση Η/Υ. Οι μέχρι τώρα προσπάθειες επικεντρώνονται σε κλασικές στατιστικές μεθόδους. Σκοπός αυτής της διδακτορικής διατριβής είναι η ανάπτυξη μεθόδων και η υλοποίηση αλγορίθμων για την εξαγωγή και ψηφιακή επεξεργασία περιβαλλοντικών σημάτων και εικόνων. Η εφαρμογή των ανωτέρω οδηγεί στη δημιουργία έμπειρων συστημάτων συνοπτικής ταξινόμησης των συστημάτων καιρού, η οποία βασίζεται σε μεθόδους επεξεργασίας εικόνας, ανάλυσης και ομαδοποίησης δεδομένων, αναγνώρισης προτύπων και θεωρίας γράφων. Η σκοπιμότητα της παρούσης έρευνας διαφαίνεται από τη πρωτοτυπία που παρουσιάζει, η οποία έγκειται στο γεγονός ότι οι τεχνικές που παρουσιάζονται και που έχουν αντιμετωπίσει επιτυχώς σειρά προβλημάτων ταξινόμησης σε διάφορους γνωστικούς τομείς, εφαρμόζονται για πρώτη φορά στην Ελλάδα σε θέματα Μετεωρολογίας-Κλιματολογίας-Φυσικής του Περιβάλλοντος και συγκεκριμένα για την συνοπτική ταξινόμηση των συστημάτων καιρού. Τα χαρακτηριστικά των σύγχρονων μεθόδων επεξεργασίας εικόνας, θεωρίας γράφων και ανάλυσης δεδομένων, καθιστούν τις προτεινόμενες προσεγγίσεις αυτής της διατριβής ανταγωνιστικές τόσο σε επίπεδο ποιότητας ταξινόμησης όσο και σε υπολογιστικό χρόνο. / The synoptic classification of weather systems involves a variety of environmental applications. Recently, the synoptic classification has been found to be relevant with the cognitive area of air pollution. Knowing the synoptic climatology of a region, allows the prediction and possibly the prevention of pollution incidents, resulting in either local sources or in transport of pollutants. This knowledge is greatly enhanced by the categorization (classification) of the synoptic conditions in a given area. In recent years ‘automatic’, non-empirical, classification methods have been developed using computers. So far these efforts have been based on classical statistical methods. The aim of this PhD thesis is the development of methods and the implementation of algorithms to extract and process digital signals and environmental images. Consequently, expert systems for the synoptic classification of weather systems are created based on methods relative to image processing, data analysis and clustering, pattern recognition and graph theory. The objective of this research is demonstrated by its own originality which lies in the fact that the presented techniques have successfully addressed a number of classification problems in different topics. It is the first time that such methods have been applied on Meteorology-Climatology-Physics of the Environment in Greece, namely the synoptic classification of weather systems. The characteristics of the modern methods proposed in this PhD thesis are competitive both in classification quality and in computational time.
5

Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project / Entwicklung einer Schnittstelle zur Überführung von Geodaten des Projektes CEOP-AEGIS in ein NetCDF-Datenmodell und Publikation dieser Daten unter Verwendung der Internetanwendung DChart

Holzer, Nicolai 08 August 2011 (has links) (PDF)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security. The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability. Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way. Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community. / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit. Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann. In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt. In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.
6

Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project

Holzer, Nicolai 20 April 2011 (has links)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security. The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability. Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way. Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community.:Task of Diploma Thesis ii Declaration of academic honesty vii Abstract ix Acknowledgments xiii Dedication xv Table of Contents xvii List of Figures xxi List of Tables xxiii List of Listings xxv Nomenclature xxvii 1 Introduction 1 1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10 2 Theoretical foundations 13 2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31 2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33 2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34 2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35 2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36 2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42 2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47 2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48 2.2.5 OPeNDAP data models and data types . . . . . . . . . 49 2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53 2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57 2.3.2 System architecture and Dapper services . . . . . . . . 58 2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61 2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64 2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66 2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67 2.5.2 Dapper and DChart system requirements . . . . . . . . 67 3 Implementation 69 3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71 3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73 3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80 3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89 3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93 3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95 3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98 3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98 3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105 3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Conclusion 111 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Appendix 119 A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119 A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121 A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122 A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123 A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124 A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125 A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126 A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127 A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130 A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131 A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132 A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133 A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134 A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135 A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136 A.5.4 Data Interface modules and classes . . . . . . . . . . . 137 A.5.5 Data Interface NetCDF metadata file for gridded data 138 A.5.6 Data Interface NetCDF metadata file for in-situ data . 139 A.5.7 Data Interface coordinate metadata file for gridded data140 A.5.8 Data Interface coordinate metadata file for in-situ data 140 A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141 A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142 A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143 A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144 A.5.13 Data Interface settings file for gridded data . . . . . . . 145 A.5.14 Data Interface settings file for in-situ data . . . . . . . 146 A.5.15 Data Interface batch file for data conversion via GrADS146 A.5.16 Data Interface batch file for data conversion via GDAL 147 A.5.17 Data Interface batch file for data conversion via CSV . 148 A.6 Pydoc documentation for upstream data interface . . . . . . . 149 A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150 A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155 A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162 A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167 A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172 A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175 A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179 A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185 A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189 A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191 Bibliography 197 Index 205 / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit. Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann. In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt. In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.:Task of Diploma Thesis ii Declaration of academic honesty vii Abstract ix Acknowledgments xiii Dedication xv Table of Contents xvii List of Figures xxi List of Tables xxiii List of Listings xxv Nomenclature xxvii 1 Introduction 1 1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10 2 Theoretical foundations 13 2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31 2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33 2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34 2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35 2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36 2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42 2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47 2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48 2.2.5 OPeNDAP data models and data types . . . . . . . . . 49 2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53 2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57 2.3.2 System architecture and Dapper services . . . . . . . . 58 2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61 2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64 2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66 2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67 2.5.2 Dapper and DChart system requirements . . . . . . . . 67 3 Implementation 69 3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71 3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73 3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80 3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89 3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93 3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95 3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98 3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98 3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105 3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Conclusion 111 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Appendix 119 A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119 A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121 A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122 A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123 A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124 A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125 A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126 A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127 A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130 A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131 A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132 A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133 A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134 A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135 A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136 A.5.4 Data Interface modules and classes . . . . . . . . . . . 137 A.5.5 Data Interface NetCDF metadata file for gridded data 138 A.5.6 Data Interface NetCDF metadata file for in-situ data . 139 A.5.7 Data Interface coordinate metadata file for gridded data140 A.5.8 Data Interface coordinate metadata file for in-situ data 140 A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141 A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142 A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143 A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144 A.5.13 Data Interface settings file for gridded data . . . . . . . 145 A.5.14 Data Interface settings file for in-situ data . . . . . . . 146 A.5.15 Data Interface batch file for data conversion via GrADS146 A.5.16 Data Interface batch file for data conversion via GDAL 147 A.5.17 Data Interface batch file for data conversion via CSV . 148 A.6 Pydoc documentation for upstream data interface . . . . . . . 149 A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150 A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155 A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162 A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167 A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172 A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175 A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179 A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185 A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189 A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191 Bibliography 197 Index 205

Page generated in 0.0756 seconds