• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastical models for networks in the life sciences

Behrisch, Michael 21 January 2008 (has links)
Motiviert durch strukturelle Eigenschaften molekularer Ähnlichkeitsnetzwerke werden die Evolution der größten Komponente eines Netzwerkes in zwei verschiedenen stochastischen Modellen, zufälligen Hypergraphen und zufälligen Schnittgraphen, untersucht. Zuerst wird bewiesen, dass die Anzahl der Knoten in der größten Komponente d-uniformer Hypergraphen einer Normalverteilung folgt. Der Beweis nutzt dabei ausschließlich probabilistische Argumente und keine enumerative Kombinatorik. Diesem grundlegenden Resultat folgen weitere Grenzwertsätze für die gemeinsame Verteilung von Knoten- und Kantenzahl sowie Sätze zur Zusammenhangswahrscheinlichkeit zufälliger Hypergraphen und zur asymptotischen Anzahl zusammenhängender Hypergraphen. Da das Hypergraphenmodell einige Eigenschaften der Realweltdaten nur unzureichend abbildet, wird anschließend die Evolution der größten Komponente in zufälligen Schnittgraphen, die Clustereigenschaften realer Netzwerke widerspiegeln, untersucht. Es wird gezeigt, dass zufällige Schnittgraphen sich von zufälligen (Hyper-)Graphen dadurch unterscheiden, dass (bei einer durchschnittlichen Nachbaranzahl von mehr als eins) weder die größte Komponente linear noch die zweitgrößte Komponente logarithmisch groß in Abhängigkeit von der Knotenzahl ist. Weiterhin wird ein Polynomialzeitalgorithmus zur Überdeckung der Kanten eines Graphen mit möglichst wenigen Cliquen (vollständigen Graphen) beschrieben und seine asymptotische Optimalität im Modell der zufälligen Schnittgraphen bewiesen. Anschließend wird die Entwicklung der chromatischen Zahl untersucht und gezeigt, dass zufällige Schnittgraphen mit hoher Wahrscheinlichkeit mittels verschiedener Greedystrategien optimal gefärbt werden können. Letztendlich zeigen Experimente auf realen Netzen eine Übereinstimmung mit den theoretischen Vorhersagen und legen eine gegenseitige Zertifizierung der Optimalität von Cliquen- und Färbungszahl durch Heuristiken nahe. / Motivated by structural properties of molecular similarity networks we study the behaviour of the component evolution in two different stochastic network models, that is random hypergraphs and random intersection graphs. We prove gaussian distribution for the number of vertices in the giant component of a random d-uniform hypergraph. We provide a proof using only probabilistic arguments, avoiding enumerative methods completely. This fundamental result is followed by further limit theorems concerning joint distributions of vertices and edges as well as the connectivity probability of random hypergraphs and the number of connected hypergraphs. Due to deficiencies of the hypergraph model in reflecting properties of the real--world data, we switch the model and study the evolution of the order of the largest component in the random intersection graph model which reflects some clustering properties of real--world networks. We show that for appropriate choice of the parameters random intersection graphs differ from random (hyper-)graphs in that neither the so-called giant component, appearing when the average number of neighbours of a vertex gets larger than one, has linear order nor is the second largest of logarithmic order in the number of vertices. Furthermore we describe a polynomial time algorithm for covering graphs with cliques, prove its asymptotic optimality in a random intersection graph model and study the evolution of the chromatic number in the model showing that, in a certain range of parameters, these random graphs can be coloured optimally with high probability using different greedy algorithms. Experiments on real network data confirm the positive theoretical predictions and suggest that heuristics for the clique and the chromatic number can work hand in hand proving mutual optimality.

Page generated in 0.0777 seconds