281 |
Effective delivery of doxycycline and epidermal growth factor for expedited healing of chronic wounds.Kulkarni, Abhilash 29 October 2012 (has links)
The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.
|
282 |
NMR studies of cbEGF-like domains from human fibrillin-1Smallridge, Rachel January 2000 (has links)
The calcium binding epidermal growth factor-like (cbEGF) 12-13 domain pair from human fibrillin-1 was the focus of studies for this dissertation. Various nuclear magnetic resonance (NMR) spectroscopy techniques were employed to analyse the calcium binding, structural and dynamic properties of this pair, and to assess the effects of a disease-causing mutation. Fibrillin-1 is a mosaic protein composed mainly of 43 cbEGF domains arranged as multiple, tandem repeats, and mutations within fibrillin-1 have been linked to Marfan syndrome (MFS). 66% of MFS-causing mutations identified thus far are localised to cbEGF domains, emphasising that the native properties of these domains are critical to the functional integrity of this protein. The cbEGF 12-13 pair is found within the longest run of cbEGFs in fibrillin-1, and many mutations that cluster in this region are associated with the severe, neonatal form of MFS. It is thought that this region may be important for fibrillin-1 assembly into 10- 12nm connective tissue microfibrils. Calcium binding studies of cbEGF 12-13 demonstrated that cbEGF 13 contains the highest affinity site thus far investigated from human fibrillin-1. Comparison with previous results showed that fibrillin-1 cbEGF calcium binding affinity can be significantly modulated by the type of domain which is linked to its N-terminus, and also highlighted the high affinity of the "neonatal" region. The NMR solution structure of cbEGF 12-13 is a near-linear, rod-like arrangement of two cbEGF domains, with both exhibiting secondary structure characteristic of this domain type. The rod-like arrangement is stabilised by calcium binding by cbEGF 13 and by hydrophobic interdomain packing interactions. This observation supports the hypothesis that all Class I EGF/cbEGF-cbEGF pairs, characterised by a single linker residue, possess this rod-like structure. The structure also exhibits additional packing interactions to those previously observed for cbEGF32- 33 from fibrillin-1, which may explain the higher calcium binding affinity of cbEGF13. A model of cbEGF 11-15, created based on structural data for cbEGF 12-13 and a model of cbEGF32-36, has highlighted a potential protein binding interface, which encompasses all known neonatal MFS mutations, as well as a flexible, unstructured loop region of cbEGF 12. Backbone dynamics data confirmed the extended structure of cbEGF 12-13. These data, combined with previous data for cbEGF32-33, highlighted a potential dynamics signature for Class I cbEGF domain pairs. Comparison of data for these pairs also suggested that, in addition to the role of calcium in stabilising rigidity on the picoto millisecond time-scale, calcium affinity may play a key role in determining the anisotropy of cbEGF pairs. Possible dynamic explanations for the variation in calcium binding affinity of cbEGF domains from human fibrillin-1 were also noted. The Gl 127S mutation located in cbEGF 13 of fibrillin-1 causes a mild variant of MFS. NMR studies of the G1127S cbEGF12-13 mutant pair showed that cbEGF12 may chaperone folding of mutant cbEGF 13, an effect most likely mediated through interdomain packing interactions. These studies have also shown that the effects of this mutation are localised to cbEGF13, suggesting that a "partial" MFS phenotype is the result of altered structural, dynamic and/or calcium binding properties of this domain.
|
283 |
The midkine family in cancer, inflammation and neural developmentKadomatsu, Kenji 06 1900 (has links)
No description available.
|
284 |
In vitro examination of vitronectin, insulin-like growth factor, insulin-like growth factor binding protein complexes as treatments to accelerate the healing of diabetic ulcersNoble, Anthony M. January 2008 (has links)
It has previously been shown that VN can form complexes with IGF-II or IGF-I in combination with its binding proteins IGFBP-3 or -5. This study aimed to determine the efficacy of using these complexes as a treatment designed to accelerate wound healing, particularly in diabetic ulcers. The primary functions of skin cells in wound healing are attachment, proliferation and migration, thus these functions were assessed in response to these complexes in skin cells derived from patients with diabetic ulcers and from non-diabetic patients. These studies examined responses to the complexes in both skin keratinocyte and fibroblast cells. Furthermore, in order to investigate the mechanisms that underlie the responses observed, I also examined the ability of skin cells to retain these functional responses when the complexes incorporated an IGF-I analogue that does not activate the IGF receptor or when the cells had been pre-incubated with an anti-αv-integrin function blocking antibody. In addition, the ability of the cells to survive and grow when treated with the complexes under conditions mimicking the diabetic wound was assessed using growth assays in which the media contained elevated concentrations of glucose and calcium. I found that cells derived from skin from normal patients showed enhanced proliferation in response to these complexes, whereas only the presence of IGF-I and IGFBP seemed to be important in stimulating the proliferation of cells derived from diabetic patients. I also found that enhanced migration was observed in fibroblasts from diabetic ulcers in response to the complexes but these responses only required the presence of VN in normal cells. Both normal and diabetic keratinocytes showed enhanced migration in response to the complexes and the responses involved the interaction of both IGF-I and VN with their respective cell surface receptors. However the enhanced migration observed in diabetic ulcer derived keratinocytes was approximately half the level seen in normal keratinocytes. Furthermore, I showed that cells derived from skin from normal patients exhibited greater proliferation when treated with complexes in the presence of high concentrations of glucose and calcium ion compared to cells that were not treated with the complexes. Likewise, cells derived from skin surrounding diabetic ulcers were able to grow in media containing high levels of glucose and calcium when treated with VN:IGFBP:IGF-I complexes. In particular diabetic skin derived fibroblasts grown in high calcium media demonstrated enhanced proliferation when treated with the complexes, whereas diabetic keratinocyte cells seemed less affected by these conditions than their normal counterparts were. The findings in this thesis show that VN:IGFBP:IGF-I complexes can elicit enhanced growth and migration in cells derived from skin from both normal and diabetic patients. Further, these responses are maintained in conditions found in the diabetic wound microenvironment, namely in the presence of high glucose and high calcium. Together these findings demonstrate the potential of the VN:IGFBP:IGF complexes as wound healing agents to treat wounds, especially diabetic ulcers. Such delayed healing wounds represent a significant burden to health care systems and are one of the primary conditions that leads to the amputation of limbs. Current treatments do not address the co-ordination of ECM and growth factor action on cells that is here demonstrated to stimulate multiple wound healing related functional effects in skin cells. The data presented here represents important new information that may guide the design of new integrated therapeutics that may enhance the healing of recalcitrant diabetic ulcers.
|
285 |
The oxidative folding of insulin-like growth factor-I analogues / by Steven John Milner.Milner, Steven John January 1996 (has links)
Addendum pasted onto back end-paper. / Bibliography: leaves 146-179. / Bibliography: leaves 146-179. / ix, 179, [66] leaves, [2] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis investigates the effect of mutations and an N-terminal extension on the oxidative folding pathway of IGF-I, analyses the structure of the stable mis-folded molecule in terms of its biological interactions, examines the kinetics of the late stages of oxidative folding and finally attempts to dissect the folding pathway of a mutant of IGF-I. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1996?
|
286 |
Role of IGF-I in ovine fetal and placental growth and development / Fong Lok.Lok, Fong January 1998 (has links)
Bibliography: p. 190-234. / 276 p. : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aims to directly test the hypothesis that restricting placental delivery of oxygen and nutrients to the fetus restricts fetal growth, in part by reducing endogenous production of insulin like growth factor-I / Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1999?
|
287 |
Characterisation of the molecular interactions between insulin-like growth factors and their binding proteins / by Melinda Robin Lucic.Lucic, Melinda Robin January 2001 (has links)
Addenda inserted in back. / Includes bibliographical references (leaves 139-160) / vii, 163 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Assesses the importance of amino acids 221 to 236 of bIGFBP-2 for IGF binding activity, by creating amino acid substitutions. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 2001?
|
288 |
Gene expression of nerve growth factor in the developing spontaneously hypertensive rat / by Patrick Helmer James Falckh.Falckh, Patrick Helmer James January 1992 (has links)
Bibliography : leaves 141-165. / xiv, 174, [8] leaves, [8] leves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aims to determine if the gene expression of NGF (NGFmRNA) is enhanced in blood vessels that display hypernoradrenergic innervation in the SHR. / Thesis (Ph.D.)--University of Adelaide, Dept. of Clinical and Experimental Pharmacology, 1992
|
289 |
Molecular interactions of latent transforming growth Factor-β binding Protein-2 (LTBP-2) with fibrillins and other extracellular matrix macromolecules [electronic resource]: LTBP-2 competes with LTBP-1 for binding to Fibrillin-1 suggesting that LTBP-2 may modulate latent TGF-β storageHirani, Rena M January 2006 (has links)
Elastic fibres, a major component of many connective tissues, are composed of an amorphous elastin core surrounded by fibrillin - containing microfibrils. The function of these microfibrils appears to require the co - ordinated interactions of fibrillins with a range of extracellular matrix ( ECM ) macromolecules including, latent transforming growth factor - β ( TGF - β ) binding proteins ( LTBPs ). LTBPs share a high degree of structural similarity to fibrillins, since they both contain unique 8 - cysteine motifs. Of the four members of the LTBP family, LTBPs - 1, - 3 and - 4 covalently bind to latent forms of TGF - β. LTBP - 1 has been shown to interact with the N - terminal domains of fibrillin - 1 and - 2 and LTBP - 4 interacts with the N - terminal domains of fibrillin - 1, suggesting that fibrillin - containing microfibrils may act as TGF - β stores and localise latent TGF - β complexes to the ECM. LTBP - 2 differs from other members of the LTBP family since it does not covalently bind latent TGF - β. However, LTBP - 2 strongly co - localises with fibrillin - containing microfibrils in a number of tissues suggesting that LTBP - 2 could have a structural role associated with these elements presumably independent of TGF - β storage, or could act to mediate specific microfibril - ECM interactions. To understand more about the function of LTBP - 2, this study involved screening for potentially important molecular interactions of LTBP - 2 with fibrillins and a variety of ECM proteins. Human recombinant LTBP - 2 ( r - LTBP - 2 ) was cloned, expressed and purified using a mammalian cell culture system. Solid phase binding assays were used to screen for interactions between r - LTBP - 2 and continguous fragments of fibrillin - 1 and - 2 as well as MAGPs, tropoelastin, collagens and proteoglycans. A cation dependant interaction was found between the C - terminal domains of LTBP - 2 and the N - terminal domains of fibrillin - 1, but not with the analogous region of fibrillin - 2. Thus, LTBP - 2 seems to have an exclusive role associated with fibrillin - 1 - containing microfibrils. Further studies found that the C - terminal region of LTBP - 2 competes with LTBP - 1 for binding to fibrillin - 1, suggesting that the binding site for LTBP - 2 on fibrillin - 1 is the same or in close proximity to that for LTBP - 1. Immunohistochemical analysis of LTBP - 1 and - 2 within developing human aorta indicated that both LTBPs co - localised with fibrillin - 1. However, the two LTBPs did have distinct distribution patterns in relation to each other, in that LTBP - 2 was found throughout the medial layer whereas LTBP - 1 was mainly located in patches of the outer medial layer. No regions of strong co - localisation of the two LTBPs were found. Thus, these findings suggest that LTBP - 2 could indirectly modulate the presence of TGF - β upon the fibrillin - containing microfibrils by competing for binding with the LTBP- 1 / TGF - β complex to these structures. Other binding studies showed a cation independent interaction between r - LTBP - 2 and an as yet unidentified component of a crude bovine collagen - IV extract. Since collagen - IV is a major component of basement membranes, an interaction between r - LTBP - 2 and a protein within this bovine collagen - IV preparation suggests LTBP - 2 may have a further function involving a basement membrane component. It will be interesting to determine if LTBP - 2 acts as a bridging molecule between basement membrane structures and fibrillin - containing microfibrils or if it has another function independent of these microfibrils. / Thesis (Ph.D.)--School of Medical Sciences, 2006.
|
290 |
Blood vessel growth in primate retinal development: Relationship of retinal maturation with choriocapillaris growth and a role for TGF-β in the retina.Allende, Marie Alexandra January 2008 (has links)
Doctor of Philosophy (PhD) / Background: The development of the blood supply in the primate retina has been extensively studied; however the relationship of the differentiating retina to the choroidal blood supply is less well known. The interaction of astrocytes and vascular endothelial cells promotes the development of the retinal vasculature from 14 weeks’ gestation (WG). Initially, astrocytes lead the developing capillaries from the optic nerve towards the macular area. However, neither astrocytes nor endothelial cells enter a prescribed avascular area, within which the fovea later forms. This may be attributed to expression of a factor that inhibits astrocyte and endothelial cell proliferation in the fovea. A factor found in the CNS that is already known to have these effects is transforming growth factor-β (TGF-β). Aims: This thesis investigated the relationship between retinal maturation and choroidal blood vessel supply and the possible role for TGF-β as an antiangiogenic factor in maintaining an avascular fovea during primate retinal development. Methods: Human eyes between 11 WG and 40 years were obtained with ethical approval from Prince of Wales Hospital and the NSW Lions Eye Bank and fixed and sectioned for histological procedures or prepared for polymerase chain reaction (PCR). Macaque eyes from foetal day (fd) 64 to postnatal 11years (p11y) were obtained from Bogor Agriculture University, Indonesia with the approval of the Ethics Committee of the University of Washington, Seattle, USA. Macaque eyes were also fixed and sectioned for immunohistochemistry and in situ hybridisation. RNA was extracted from human foetal retinas and used for RTPCR (Reverse Transcriptase PCR), QPCR (Quantitative PCR) and preparation of riboprobes. PCR products were analysed using both restriction digest and sequencing. RTPCR was used to identify TGF-β1, TGF-β2 and TGF-β3 in the developing human and in the developing and adult macaque retinas whilst QPCR was used to quantify the TGF-β isoforms in central compared to peripheral retina and in foetal compared to adult retina. In situ hybridisation was performed according to a standard protocol and visualised using Roche HNPP Fast Red detection set with designed riboprobes for TGF-β1, TGF-β2 and TGF-β3 (DIG RNA labelling kit). Some sections were counterstained with vimentin antibody. Immunohistochemistry was performed on human retina and choroid sections using antibodies to CD34 and Ki67 and on human and macaque retina using antibodies to synaptophysin, vimentin, GFAP, calbindin, S-opsin, RG-opsin, rhodopsin, TGF-β1, TGF-β2, TGF-β3 and their receptors TβRI and TβRII. Sections of the retina were imaged and analysed using either a Leica Confocal microscope and TCSNT software or Zeiss Confocal microscope and LSM 5 Pascal software. Data from the human retina and choroid sections corresponding to different regions (foveal, parafoveal nasal, parafoveal temporal, nasal and temporal) was collected to measure the number of Ki-67 immunolabelled mitotic endothelial cells and the area of CD34 immunolabelled choriocapillaris using Adobe Photoshop version 5.0.2, NIH software version 1.62 (measurement macros) and Excel. In the human and macaque sections the intensity of TGF-β protein and mRNA expression was captured from different regions of the retina (foveal, parafoveal nasal, parafoveal temporal, nasal, temporal, nasal to disc) to compile montages. Montages were then re-imported into LSM 5 Pascal software to measure the optical density across each montage along the ganglion cell layer, outer neuroblastic zone and photoreceptor layer collecting data in Excel for graphical representation. In addition to the montages, individual sections were assessed for co-localisation of TGF-β and TβR to various retinal cell types. Results: Analyses of choriocapillaris area and endothelial cell (EC) proliferation were able to demonstrate that the area of choriocapillaris endothelium is greater in the foveal region at all ages (14-18.5WG), that the rate of choriocapillaris EC proliferation declines dramatically over this same period and that the lowest rates of EC proliferation are at the incipient fovea. Most importantly these findings indicate that EC proliferation in the choriocapillaris does not appear to be promoted by increased metabolic activity in central retinal neurons which are more developed with higher oxygen and nutrient demands, which is the mechanism widely thought to regulate development of the retinal vasculature. PCR showed all TGF-β isoforms to be present in the human developing and adult retina. QPCR revealed that TGF-β2 was the most predominant isoform, followed by TGF-β3 with very small amounts of TGF-β1 seen. The isoforms were more abundant in developing rather than adult retina and in central rather than peripheral retina. Studies of the distribution of TGF-β protein and mRNA using immunohistochemistry and in situ hybridisation confirmed the low levels of TGF-β1 protein and mRNA observed in QPCR and demonstrated distinct centroperipheral gradients in the photoreceptor layer for TGF-β2 and TGF-β3. Relative high amounts of TGF-β in the fovea could affect vascular patterning due to TβRI seen in astrocytes which lead the blood vessels at the foveal rim at the level of the ganglion cell plexus. TGF-β2 and TGF-β3 expression is detected before formation of the foveal avascular zone (FAZ) at fd64 (~15WG) - fd73 (~17WG) with levels peaking in the foveal region at fd105 (~25WG) by the time the FAZ forms. Conclusions: This thesis has shown that EC proliferation in the choriocapillaris does not appear to be promoted by increased metabolic activity in central retinal neurons as reduced rates of EC proliferation in the ‘foveal’ chorioretinal location were observed at all ages studied between 14 and 18.5WG. The findings suggest that mechanisms regulating proliferation and growth of the choroidal vasculature are independent of differentiation in the neural retina and are therefore different to those governing the formation of the retinal vasculature. All TGF-β isoforms are expressed in developing and adult human and macaque retina with TGF-β2 being the predominant isoform. TGF-β isoforms are more abundant in central compared to peripheral retina and in developing compared to adult retina. Centro-peripheral gradients of TGF-β2 and TGF-β3 across the photoreceptor layer and TβRI on astrocytes support the presence of TGF-β in the fovea as an antiproliferative and antiangiogenic factor by helping to define the FAZ early in development, well before 23-25 WG in humans and before fd100 in macaques.
|
Page generated in 0.0565 seconds