261 |
Review of clinical benefits and cost effectiveness of epidermal growthfactor receptor-tyrosine kinase inhibitor (EGFR-TKI) as first linetreatment for patients with advanced non-small cell lung cancer(NSCLC)Choi, Ho-ying., 蔡可盈. January 2011 (has links)
published_or_final_version / Public Health / Master / Master of Public Health
|
262 |
Importance of Hyaluronan-CD44 Signaling in Tumor Progression : Crosstalk with TGFβ and PDGF-BB SignalingPorsch, Helena January 2013 (has links)
In order for solid tumors to metastasize, tumor cells must acquire the ability to invade the surrounding tissue and intravasate into blood- or lymph vessels, survive in the circulation and then extravasate at a distant site to form a new tumor. Overexpression of the glycosaminoglycan hyaluronan, and its adhesion receptor CD44, correlate with breast cancer progression. This thesis focuses on the role of hyaluronan in tumor invasion and metastasis. In paper I, we demonstrated that upregulation of the hyaluronan synthesizing enzyme hyaluronan synthase 2 (HAS2) was crucial for transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells. In paper II, we further demonstrated that silencing of HAS2 decreased the invasive behavior of bone-metastasizing breast cancer cells, via upregulation of tissue inhibitor for metalloproteinase 1 (TIMP1), and dephosphorylation of focal adhesion kinase (FAK). During tumorigenesis, stromal cells, such as fibroblasts, play important roles and several growth factors are synthesized, promoting crosstalk between different cell surface receptors. In paper III, we investigated the crosstalk between the hyaluronan receptor CD44 and the receptors for TGFβ and platelet-derived growth factor BB (PDGF-BB) in dermal fibroblasts. We found that the receptors for the three molecules form a ternary complex, and that PDGF-BB can activate the Smad pathway downstream of TGFβRI. Importantly, CD44 negatively modulated the signaling of both PDGF-BB and TGFβ. In paper IV, we studied the process by which breast cancer cells invade blood-vessels and the role of hyaluronan and CD44 in angiogenesis. Importantly, CD44, or the hyaluronan degrading enzyme hyaluronidase 2 (HYAL2), decreased the capacity of endothelial cells to form tubes in a 3D in vivo-like assay. Collectively, our studies add to the understanding of the role of hyaluronan in tumor progression.
|
263 |
Plasmon resonance coupling as a tool for detecting epidermal growth factor receptor expression in cancerAaron, Jesse Scott, 1979- 28 August 2008 (has links)
Optical molecular imaging has burgeoned into a major field within biomedicine, and technologies that incorporate surface plasmon resonance effects have become a major focus within this field. Plasmon resonance has been defined as the collective oscillation of the conduction band electrons in certain metals (such as gold) in response to an electric field, such as an impinging wave of light. We show that elastic light scattering due to the plasmon resonance of nanometer-sized gold particles makes them powerful tools for optical imaging of epidermal growth factor receptor (EGFR) expression -- a major biomarker for carcinogenesis. Optical technologies in general are poised as cheap, flexible ways to aid in diagnosis and treatment of disease. In addition to supplying a bright, stable optical scattering signal and a convenient conjugation platform for targeting molecules, these materials display a unique behavior termed "plasmon coupling". This term refers to the dramatic optical property changes brought about by the presence of other nearby nanoparticles. These changes include a dramatic red-shifting in their peak plasmon resonance wavelength, as well as a non-linear, per-particle increase in the overall scattered power. We show that such conditions exist in cells and are primarily due to intricate protein trafficking mechanisms as part of the EGFR life-cycle. The observed variations in plasmon coupling can give clues as to the nanoscale organization of these important proteins. In addition, the resulting optical property changes result in a large, molecular-specific contrast enhancement due to the shifting of the resonance closer to the near infrared region, where biological tissues tend to be most transparent. Despite this enhancement, however, many tissues contain large endogenous signals, as well as barriers to delivery of both light and the nanoparticles. As such, we also show an example of a multifaceted approach for further increasing the apparent molecular-specific optical signals in imaging of EGFR expression by using an oscillating magnetic field. This serves to encode the signal from magnetically susceptible plasmonic nanoparticles, making their extraction from the background possible. Overall, the studies presented in this dissertation should serve to stimulate further investigations into a wide variety of technologies, techniques, and applications.
|
264 |
Determining the roles of Nel in the development of the avian visual systemKuan, Soh Leh January 2012 (has links)
Cell-cell signalling molecules play important roles in neural development. In response to extracellular signals, neuronal progenitor cells proliferate, differentiate, and form a neuronal network. In the vertebrate retina, retinal ganglion cells (RGCs) are the first neurons produced during development and are the only neurons that send projections to the brain. However, the molecular mechanisms for RGC development have not been fully understood. In this study, I have investigated the expression and functions of Nel (Neural Epidermal Growth Factor Like), an extracellular glycoprotein that contains chordin-like domains and epidermal growth factor-like domains, in the development of the chick RGCs and retinotectal projection. I found that on embryonic days (E) 2-3.5, Nel was expressed in the presumptive retinal pigment epithelium of the developing eye. Correspondingly, Nel-binding activity (Nel receptor activity) was detected in the retinal pigment epithelium and also the progenitor layer of the neural retina. At the early stages during RGC formation, Nel overexpression increased the total number of RGCs and accelerated the progression of RGC differentiation wave. Conversely, Nel expression knockdown decreased the total number of RGCs and slowed down the progression of RGC differentiation wave. At later stages (E3-E18), expression of Nel in the retina was in the retinal pigment epithelium and the RGC layer, whereas receptor activity for Nel was localized in the retinal pigment epithelium and the RGC axons. In vivo, Nel overexpression in the developing retina induced the inhibition of RGC axons and thus disrupting the intraretinal RGC axon projection. These results suggest that Nel can positively regulate the production of RGCs at the early stages during retinal development, and at the later stages, Nel can function as an inhibitory guidance cue in vivo for RGC axons.
|
265 |
Role of Vascular Endothelial Growth Factor Signaling in Brown Adipocyte Survival, Proliferation and FunctionBagchi, Mandrita 06 August 2013 (has links)
Both white and brown adipose tissues exhibit extensive vascularity. Increased angiogenesis in brown adipose tissue (BAT) is crucial for brown fat activation and thermogenesis in animals during cold acclimation. BAT can be similarly activated by food intake to generate heat through cellular respiration, in a process known as diet induced thermogenesis. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that regulates both pathological and physiological angiogenesis and can stimulate cell proliferation, migration, survival and vessel permeability. However, VEGF has also been shown to affect an increasing number of non-vascular cells such as skeletal muscle and kidney podocytes. The expression and function of VEGF in white and brown adipocytes are not fully understood. We have previously shown that the expression of VEGF is concomitantly regulated with skeletal muscle differentiation. Here we show that VEGF is expressed in BAT and all major white adipose depots in mice. VEGF expression was increased during white and brown adipocyte differentiation and was regulated in cultured brown adipocytes by the \(PPAR\gamma\) agonist troglitazone and by \(PGC1\alpha\) in BAT in vivo. Systemic VEGF neutralization led to brown adipocyte apoptosis in vivo, loss of mitochondrial cristae and increased mitophagy and was associated with increased inflammation and fibrosis. VEGFR2 was expressed in both brown preadipocytes and adipocytes. Blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown adipocyte apoptosis in vitro. VEGF also functioned as a mitogen and survival factor for brown preadipocytes. VEGF 164 and VEGF 188, isoforms that can bind heparan sulfate proteoglycans, comprise >98% of total VEGF in BAT, subcutaneous and perigonadal fat depots. Embryos that lacked VEGF 164 and 188 displayed abnormal BAT development with fewer brown adipocytes, lower levels of mitochondrial uncoupling protein 1 and Cox IV. These results indicate a direct role for VEGF signaling in brown adipocytes and preadipocytes and suggest the importance of heparan sulfate binding VEGF isoforms in BAT development. Elucidation of the role of VEGF signaling in adipocytes is vital to understanding adipose tissue expansion and activation and may reveal novel therapeutic targets for the activation of brown fat in humans.
|
266 |
Differential expression of p75 low affinity neurotrophin receptor in hypoxic-ischemic neonatal mouse brain林國泰, Lam, Kwok-tai. January 1998 (has links)
published_or_final_version / abstract / toc / Paediatrics / Master / Master of Philosophy
|
267 |
Nutritional programming of hepatic IGF-1 expression in rats吳浩賓, Ng, Ho-bun, Dakilis. January 2002 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy
|
268 |
Μελέτης [sic] της αγγειογενετικής δράσης του νευρικού αυξητικού παράγοντα (NGF) σε μοντέλο ισχαιμίας οπίσθιων άκρων κονίκλωνΚαρατζάς, Ανδρέας 15 September 2014 (has links)
Η περιφερική αρτηριοπάθεια αποτελεί μία νόσο με αυξημένη επίπτωση στις σύγχρονες χώρες. Οι τρόποι αντιμετώπισής της ποικίλουν, ωστόσο, ένα μεγάλο ποσοστό ασθενών δεν μπορεί να αντιμετωπιστεί με τις υπάρχουσες συμβατικές θεραπείες, είτε χειρουργικές, είτε συντηρητικές. Η αγγειογένεση αποτελεί έναν πολλά υποσχόμενο τρόπο αντιμετώπισης. Επιτελείται ευρεία έρευνα με χρησιμοποίηση μιας μεγάλης ποικιλίας ουσιών και κυττάρων με στόχο την επίτευξη θεραπευτικής αγγειογένεσης που θα βελτιώσει την κλινική εικόνα των ασθενών με περιφερική αρτηριοπάθεια. Ο νευρικός αυξητικός παράγοντας (NGF) υπάρχουν αναφορές ότι έχει σημαντικό ρόλο στη φυσιολογική και παθολογική αγγειογένεση. Βασισμένοι σε αυτές τις παρατηρήσεις, υποθέσαμε ότι ο NGF μπορεί να επάγει το σχηματισμό λειτουργικών αιμοφόρων αγγείων σε μοντέλο ισχαιμίας οπισθίων άκρων κονίκλου. Η ισχαιμία στα οπίσθια άκρα προκλήθηκε σε 34 κονίκλους με αμφοτερόπλευρο εμβολισμό της μηριαίας αρτηρίας. Την 7η, 14η και 20η ημέρα μετά τον εμβολισμό χορηγήθηκε NGF ενδομυϊκά σε ένα από τα δύο ισχαιμικά άκρα και εγχύθηκε μάρτυρας στο άλλο άκρο. Την 40η ημέρα, τα νεοσχηματισμένα παράπλευρα αγγεία διαμέτρου μεγαλύτερης των 500μm ποσοτικοποιήθηκαν με διαωτιαία ενδοαρτηριακή αφαιρετική αγγειογραφία. Πραγματοποιήθηκε, επίσης, in vivo δυναμική αξονική τομογραφία αιμάτωσης σε αμφότερα τα άκρα ώστε να διερευνηθεί η αιμοδυναμική ανάρρωση των ισχαιμικών ιστών. Η λειτουργική εκτίμηση της αιμάτωσης των άκρων έδειξε στατιστικά σημαντική αύξηση της αιματικής ροής και του όγκου αίματος στα άκρα που χορηγήθηκε NGF. Ωστόσο, η αύξηση των παράπλευρων αγγείων δεν ήταν ανιχνεύσιμη αγγειογραφικά, κάτι που υποδηλώνει ότι ο NGF ενίσχυσε τη δημιουργία τριχοειδικού δικτύου αλλά όχι την αρτηριογένεση. Ο συνδυασμός του NGF είτε με αναστολέα του TrkA είτε με αναστολέα του VEGFR-2, κατήργησε την αιμοδυναμική ανάρρωση που προκάλεσε ο NGF. Αυτό δείχνει εξάρτηση της αγγειογενετικής δράσης του NGF τόσο από το δικό του υποδοχέα άμεσα, όσο και από τον υποδοχέα του VEGF έμμεσα. Τα ανωτέρω ευρήματα προσφέρουν νέους ορίζοντες στην κατανόηση της δράσης του NGF στο σχηματισμό νέων αγγείων και στις πιθανές εφαρμογές του στη θεραπευτική αγγειογένεση. / Nerve growth factor (NGF) has been reported to play an important role in physiological and pathological angiogenesis. Based on these observations, we hypothesized that NGF may induce the formation of functional blood vessels in a hindlimb ischemic rabbit model. Hindlimb ischemia was induced in 34 rabbits bilaterally by endovascular embolization of femoral arteries. On the 7th, 14th, and 20th postembolization days, NGF was injected intramuscularly, in 1 ischemic limb, and vehicle was injected in the contralateral control limb. On the 40th day, newly developed collateral vessels (diameter .500 mm) were quantified by transauricular intraarterial subtraction angiography. Perfusion analysis of an in vivo dynamic computed tomography study was performed to the limbs to investigate the hemodynamic recovery of the distal ischemic tissues. Functional estimation of limb perfusion showed a statistically significant increase of blood flow and blood volume for NGF. However, the increase of the collateral vessels was not detectable angiographically, providing evidence for the existence of a NGF-stimulated capillary angiogenic network but not increase of arteriogenesis. The combination of NGF with either tropomyosin-related kinase type A or vascular endothelial growth factor receptor 2 antagonists abolished the NGF-induced hemodynamic recovery. These findings provide new insights into understanding the involvement of NGF in vascular formation and its applications in therapeutic angiogenesis.
|
269 |
The role of vascular endothelial growth factor (VEGF) in repair and recovery from acute respiratory distress syndrome (ARDS)Medford, Andrew R. L. January 2007 (has links)
Acute Respiratory Distress Syndrome (ARDS) is the most extreme form of acute lung injury and continues to have a significant morbidity and mortality. Unfortunately, the mechanisms involved in the recovery and repair of the lung following ARDS remain poorly understood. An understanding of these is pivotal to improving outcome from acute lung injury. Several observational studies have suggested a potential relationship between Vascular Endothelial Growth Factor (VEGF) in the lung and the development/outcome of ARDS. In this thesis, three potential mechanisms underlying these observations have been explored: 1. What is the anatomical distribution of VEGF receptor and isoform expression in normal and ARDS lung? How does this change at early and later time points following acute lung injury? 2. Are human type 2 alveolar epithelial (ATII) cells a source of and target for VEGF? How does exposure to a pro-inflammatory milieu modify their expression of VEGF isoforms and receptors? 3. Is there a relationship between a functional VEGF polymorphism and susceptibility to developing and severity of ARDS? I have demonstrated VEGF receptor expression on both sides of the alveolarcapillary membrane with upregulation in later ARDS. All three principal isoforms (VEGF121, VEGF165 and VEGF189) are expressed in normal human lung with uniform downregulation of all three in early ARDS, which normalises with increasing time following injury. I have not found any evidence of VEGF isoform switching. I have also demonstrated human ATII cells are both a significant cellular source of and a target for VEGF (via VEGF receptor expression) confirming autocrine VEGF activity in the lung. VEGF is an ATII cell survival factor. ATII cells differentially respond to pro-inflammatory stimuli by increasing VEGF isoform but not receptor expression, which may serve as a regulatory control mechanism. Finally, I have demonstrated the VEGF 936 T allele increases susceptibility to and the severity of lung injury. The T allele is associated with an increase in plasma VEGF level in ARDS patients but intra-alveolar levels are unaffected.
|
270 |
Regulation and developmental role of the epidermal growth factor (Egf) receptor in the Drosophila eyeCasci, Tanita January 2000 (has links)
No description available.
|
Page generated in 0.058 seconds