• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Whole-Genome Assembly of Atriplex hortensis L. Using OxfordNanopore Technology with Chromatin-Contact Mapping

Hunt, Spencer Philip 01 July 2019 (has links)
Atriplex hortensis (2n = 2x = 18, 1C genome size ~1.1 gigabases), also known as garden orach, is a highly nutritious, broadleaf annual of the Amaranthaceae-Chenopodiaceae family that has spread from its native Eurasia to other temperate and subtropical environments worldwide. Atriplex is a highly complex and polyphyletic genus of generally halophytic and/or xerophytic plants, some of which have been used as food sources for humans and animals alike. Although there is some literature describing the taxonomy and ecology of orach, there is a lack of genetic and genomic data that would otherwise help elucidate the genetic variation, phylogenetic position, and future potential of this species. Here, we report the assembly of the first highquality, chromosome-scale reference genome for orach cv. ‘Golden’. Sequence data was produced using Oxford Nanopore’s MinION sequencing technology in conjunction with Illumina short-reads and chromatin-contact mapping. Genome assembly was accomplished using the high-noise, single-molecule sequencing assembler, Canu. The genome is enriched for highly repetitive DNA (68%). The Canu assembly combined with the Hi-C chromatin-proximity data yielded a final assembly containing 1,325 scaffolds with a contig N50 of 98.9 Mb and with 94.7% of the assembly represented in the nine largest, chromosome-scale scaffolds. Sixty-eight percent of the genome was classified as highly repetitive DNA, with the most common repetitive elements being Gypsy and Copia-like LTRs. The annotation was completed using MAKER which identified 31,010 gene models and 2,555 tRNA genes. Completeness of the genome was assessed using the Benchmarking Universal Single Copy Orthologs (BUSCO) platform, which quantifies functional gene content using a large core set of highly conserved orthologous genes (COGs). Of the 1,375 plant-specific COGs in the Embryophyta database, 1,330 (96.7%) were identified in the Atriplex assembly. We also report the results of a resequencing panel consisting of 21 accessions which illustrates a high degree of genetic similarity among cultivars and wild material from various locations in North America and Europe. These genome resources provide vital information to better understand orach and facilitate future study and comparison.
2

The Genome Sequence of Gossypium herbaceum (A1), a Domesticated Diploid Cotton

Freeman, Alex J 01 April 2018 (has links)
Gossypium herbaceum is a species of cotton native to Africa and Asia. As part of a larger effort to investigate structural variation in assorted diploid and polyploid cotton genomes we have sequenced and assembled the genome of G. herbaceum. Cultivated G. herbaceum is an A1-genome diploid from the Old World (Africa) with a genome size of approximately 1.7 Gb. Long range information is essential in constructing a high-quality assembly, especially when the genome is expected to be highly repetitive. Here we present a quality draft genome of G. herbaceum (cv. Wagad) using a multi-platform sequencing strategy (PacBio RS II, Dovetail Genomics, Phase Genomics, BioNano Genomics). PacBio RS II (60X) long reads were de novo assembled using the CANU assembler. Illumina sequence reads generated from the PROXIMO library method from Phase Genomics, and BioNano high-fidelity whole genome maps were used to further scaffolding. Finally, the assembly was polished using PILON. This multi-platform long range sequencing strategy will help greatly in attaining high quality de novo reconstructions of genomes. This assembly will be used towards comparative analysis with G. arboreum, which is also a domesticated A2-genome diploid. Not only will this provide a quality reference genome for G. herbaceum, it also provides an opportunity to assess recent technologies such as Dovetail Genomics, Phase Genomics, and Bionano Genomics. The G. herbaceum genome sequence serves as an example to the plant genomics community for those who have an interest in using multi-platform sequencing technologies for de novo genome sequencing.
3

The Genome of Cañahua: An Emerging Andean Super Grain

Mangelson, Hayley Jennifer 01 May 2019 (has links)
Chenopodium pallidicaule, known commonly as cañahua, is a semi-domesticated crop grown in high-altitude regions of the Andes. It is an A-genome diploid (2n = 2x = 18) relative of the allotetraploid (AABB) Chenopodium quinoa and shares many of its nutritional benefits. Both species contain a complete protein, a low glycemic index, and offer a wide variety of nutritionally important vitamins and minerals. Due to its minor crop status, few genomic resources for its improvement have been developed. Here we present a fully annotated, reference-quality assembly of cañahua. The reference assembly was developed using a combination of established techniques, including multiple rounds of Hi-C based proximity-guided assembly. The final assembly consists of 4,633 scaffolds with 96.6% of the assembly contained in nine scaffolds representing the nine haploid chromosomes of the species. Repetitive element analysis classified 52.3% of the assembly as repetitive, with the most common (27.3% of assembly) identified as LTR retrotransposons. MAKER annotation of the assembly yielded 22,832 putative genes with an average length of 4.6 Kb. When compared with quinoa, strong patterns of synteny support the hypothesis that cañahua is a close A-genome diploid relative, and thus potentially a model diploid species for genetic analysis and improvement of quinoa. Resequencing and phylogenetic analysis of a diversity panel of 30 cañahua accessions collected from across the Altiplano suggests that coordinated efforts are needed to enhance genetic diversity conservation within ex situ germplasm collections.
4

Development and Application of Genomic Resources in Non-model Bird Species

Wang, Biao January 2012 (has links)
Understanding the genetic basis of biological processes is a fundamental component of modern ecology and evolutionary biology studies. With the recent advent of next generation sequencing (NGS) technologies, it is now possible to perform large genome and transcriptome projects for ecologically important non-model species. In this thesis, I focused on the development and application of genomic resources of two non-model bird species, the black grouse (Tetrao tetrix) and the great snipe (Gallinago media). Using the chicken genome as a reference, I developed a reference guided NGS pipeline to assemble the complete draft genome of black grouse. The draft genome has a good coverage of the main 29 chromosomes of the chicken genome. The genome was used to develop a vast number of genetic markers. Comparing this genome with that of other species, I identified the genomic regions which were important for the lineage specific evolution of black grouse. I also sequenced and characterised the spleen transcriptome of the black grouse. I identified and validated a large number of gene-based microsatellite markers from the transcriptome and identified and confirmed the expression of immune related genes. Using a similar RNA-Seq approach, I also sequenced the blood transcriptomes of 14 great snipe males with different mating success. I identified genes and single nucleotide polymorphisms (SNPs) which might be related to male mating success in this species, both in terms of gene expression levels and genetic variation structure. For the immunologically important major histocompatibility complex (MHC) gene region of black grouse, I constructed a fosmid library and used it to sequence the complete core MHC region of this species. This resource allowed me to perform a comprehensive comparative genomics analysis of the galliform MHC, by which I found that some genes in this region were affected by selective forces. I was also able to develop a single locus genotyping protocol for the duplicated MHC BLB (class IIB) genes and found that the two black grouse BLB loci followed different evolutionary trajectories. This thesis set an example of developing genomic resources in non-model species and applying them in addressing questions relevant to ecology and evolutionary biology.
5

The mapping task and its various applications in next-generation sequencing

Otto, Christian 23 March 2015 (has links) (PDF)
The aim of this thesis is the development and benchmarking of computational methods for the analysis of high-throughput data from tiling arrays and next-generation sequencing. Tiling arrays have been a mainstay of genome-wide transcriptomics, e.g., in the identification of functional elements in the human genome. Due to limitations of existing methods for the data analysis of this data, a novel statistical approach is presented that identifies expressed segments as significant differences from the background distribution and thus avoids dataset-specific parameters. This method detects differentially expressed segments in biological data with significantly lower false discovery rates and equivalent sensitivities compared to commonly used methods. In addition, it is also clearly superior in the recovery of exon-intron structures. Moreover, the search for local accumulations of expressed segments in tiling array data has led to the identification of very large expressed regions that may constitute a new class of macroRNAs. This thesis proceeds with next-generation sequencing for which various protocols have been devised to study genomic, transcriptomic, and epigenomic features. One of the first crucial steps in most NGS data analyses is the mapping of sequencing reads to a reference genome. This work introduces algorithmic methods to solve the mapping tasks for three major NGS protocols: DNA-seq, RNA-seq, and MethylC-seq. All methods have been thoroughly benchmarked and integrated into the segemehl mapping suite. First, mapping of DNA-seq data is facilitated by the core mapping algorithm of segemehl. Since the initial publication, it has been continuously updated and expanded. Here, extensive and reproducible benchmarks are presented that compare segemehl to state-of-the-art read aligners on various data sets. The results indicate that it is not only more sensitive in finding the optimal alignment with respect to the unit edit distance but also very specific compared to most commonly used alternative read mappers. These advantages are observable for both real and simulated reads, are largely independent of the read length and sequencing technology, but come at the cost of higher running time and memory consumption. Second, the split-read extension of segemehl, presented by Hoffmann, enables the mapping of RNA-seq data, a computationally more difficult form of the mapping task due to the occurrence of splicing. Here, the novel tool lack is presented, which aims to recover missed RNA-seq read alignments using de novo splice junction information. It performs very well in benchmarks and may thus be a beneficial extension to RNA-seq analysis pipelines. Third, a novel method is introduced that facilitates the mapping of bisulfite-treated sequencing data. This protocol is considered the gold standard in genome-wide studies of DNA methylation, one of the major epigenetic modifications in animals and plants. The treatment of DNA with sodium bisulfite selectively converts unmethylated cytosines to uracils, while methylated ones remain unchanged. The bisulfite extension developed here performs seed searches on a collapsed alphabet followed by bisulfite-sensitive dynamic programming alignments. Thus, it is insensitive to bisulfite-related mismatches and does not rely on post-processing, in contrast to other methods. In comparison to state-of-the-art tools, this method achieves significantly higher sensitivities and performs time-competitive in mapping millions of sequencing reads to vertebrate genomes. Remarkably, the increase in sensitivity does not come at the cost of decreased specificity and thus may finally result in a better performance in calling the methylation rate. Lastly, the potential of mapping strategies for de novo genome assemblies is demonstrated with the introduction of a new guided assembly procedure. It incorporates mapping as major component and uses the additional information (e.g., annotation) as guide. With this method, the complete mitochondrial genome of Eulimnogammarus verrucosus has been successfully assembled even though the sequencing library has been heavily dominated by nuclear DNA. In summary, this thesis introduces algorithmic methods that significantly improve the analysis of tiling array, DNA-seq, RNA-seq, and MethylC-seq data, and proposes standards for benchmarking NGS read aligners. Moreover, it presents a new guided assembly procedure that has been successfully applied in the de novo assembly of a crustacean mitogenome. / Diese Arbeit befasst sich mit der Entwicklung und dem Benchmarken von Verfahren zur Analyse von Daten aus Hochdurchsatz-Technologien, wie Tiling Arrays oder Hochdurchsatz-Sequenzierung. Tiling Arrays bildeten lange Zeit die Grundlage für die genomweite Untersuchung des Transkriptoms und kamen beispielsweise bei der Identifizierung funktioneller Elemente im menschlichen Genom zum Einsatz. In dieser Arbeit wird ein neues statistisches Verfahren zur Auswertung von Tiling Array-Daten vorgestellt. Darin werden Segmente als exprimiert klassifiziert, wenn sich deren Signale signifikant von der Hintergrundverteilung unterscheiden. Dadurch werden keine auf den Datensatz abgestimmten Parameterwerte benötigt. Die hier vorgestellte Methode erkennt differentiell exprimierte Segmente in biologischen Daten bei gleicher Sensitivität mit geringerer Falsch-Positiv-Rate im Vergleich zu den derzeit hauptsächlich eingesetzten Verfahren. Zudem ist die Methode bei der Erkennung von Exon-Intron Grenzen präziser. Die Suche nach Anhäufungen exprimierter Segmente hat darüber hinaus zur Entdeckung von sehr langen Regionen geführt, welche möglicherweise eine neue Klasse von macroRNAs darstellen. Nach dem Exkurs zu Tiling Arrays konzentriert sich diese Arbeit nun auf die Hochdurchsatz-Sequenzierung, für die bereits verschiedene Sequenzierungsprotokolle zur Untersuchungen des Genoms, Transkriptoms und Epigenoms etabliert sind. Einer der ersten und entscheidenden Schritte in der Analyse von Sequenzierungsdaten stellt in den meisten Fällen das Mappen dar, bei dem kurze Sequenzen (Reads) auf ein großes Referenzgenom aligniert werden. Die vorliegende Arbeit stellt algorithmische Methoden vor, welche das Mapping-Problem für drei wichtige Sequenzierungsprotokolle (DNA-Seq, RNA-Seq und MethylC-Seq) lösen. Alle Methoden wurden ausführlichen Benchmarks unterzogen und sind in der segemehl-Suite integriert. Als Erstes wird hier der Kern-Algorithmus von segemehl vorgestellt, welcher das Mappen von DNA-Sequenzierungsdaten ermöglicht. Seit der ersten Veröffentlichung wurde dieser kontinuierlich optimiert und erweitert. In dieser Arbeit werden umfangreiche und auf Reproduzierbarkeit bedachte Benchmarks präsentiert, in denen segemehl auf zahlreichen Datensätzen mit bekannten Mapping-Programmen verglichen wird. Die Ergebnisse zeigen, dass segemehl nicht nur sensitiver im Auffinden von optimalen Alignments bezüglich der Editierdistanz sondern auch sehr spezifisch im Vergleich zu anderen Methoden ist. Diese Vorteile sind in realen und simulierten Daten unabhängig von der Sequenzierungstechnologie oder der Länge der Reads erkennbar, gehen aber zu Lasten einer längeren Laufzeit und eines höheren Speicherverbrauchs. Als Zweites wird das Mappen von RNA-Sequenzierungsdaten untersucht, welches bereits von der Split-Read-Erweiterung von segemehl unterstützt wird. Aufgrund von Spleißen ist diese Form des Mapping-Problems rechnerisch aufwendiger. In dieser Arbeit wird das neue Programm lack vorgestellt, welches darauf abzielt, fehlende Read-Alignments mit Hilfe von de novo Spleiß-Information zu finden. Es erzielt hervorragende Ergebnisse und stellt somit eine sinnvolle Ergänzung zu Analyse-Pipelines für RNA-Sequenzierungsdaten dar. Als Drittes wird eine neue Methode zum Mappen von Bisulfit-behandelte Sequenzierungsdaten vorgestellt. Dieses Protokoll gilt als Goldstandard in der genomweiten Untersuchung der DNA-Methylierung, einer der wichtigsten epigenetischen Modifikationen in Tieren und Pflanzen. Dabei wird die DNA vor der Sequenzierung mit Natriumbisulfit behandelt, welches selektiv nicht methylierte Cytosine zu Uracilen konvertiert, während Methylcytosine davon unberührt bleiben. Die hier vorgestellte Bisulfit-Erweiterung führt die Seed-Suche auf einem reduziertem Alphabet durch und verifiziert die erhaltenen Treffer mit einem auf dynamischer Programmierung basierenden Bisulfit-sensitiven Alignment-Algorithmus. Das verwendete Verfahren ist somit unempfindlich gegenüber Bisulfit-Konvertierungen und erfordert im Gegensatz zu anderen Verfahren keine weitere Nachverarbeitung. Im Vergleich zu aktuell eingesetzten Programmen ist die Methode sensitiver und benötigt eine vergleichbare Laufzeit beim Mappen von Millionen von Reads auf große Genome. Bemerkenswerterweise wird die erhöhte Sensitivität bei gleichbleibend guter Spezifizität erreicht. Dadurch könnte diese Methode somit auch bessere Ergebnisse bei der präzisen Bestimmung der Methylierungsraten erreichen. Schließlich wird noch das Potential von Mapping-Strategien für Assemblierungen mit der Einführung eines neuen, Kristallisation-genanntes Verfahren zur unterstützten Assemblierung aufgezeigt. Es enthält Mapping als Hauptbestandteil und nutzt Zusatzinformation (z.B. Annotationen) als Unterstützung. Dieses Verfahren ermöglichte die erfolgreiche Assemblierung des kompletten mitochondrialen Genoms von Eulimnogammarus verrucosus trotz einer vorwiegend aus nukleärer DNA bestehenden genomischen Bibliothek. Zusammenfassend stellt diese Arbeit algorithmische Methoden vor, welche die Analysen von Tiling Array, DNA-Seq, RNA-Seq und MethylC-Seq Daten signifikant verbessern. Es werden zudem Standards für den Vergleich von Programmen zum Mappen von Daten der Hochdurchsatz-Sequenzierung vorgeschlagen. Darüber hinaus wird ein neues Verfahren zur unterstützten Genom-Assemblierung vorgestellt, welches erfolgreich bei der de novo-Assemblierung eines mitochondrialen Krustentier-Genoms eingesetzt wurde.
6

The mapping task and its various applications in next-generation sequencing

Otto, Christian 27 February 2015 (has links)
The aim of this thesis is the development and benchmarking of computational methods for the analysis of high-throughput data from tiling arrays and next-generation sequencing. Tiling arrays have been a mainstay of genome-wide transcriptomics, e.g., in the identification of functional elements in the human genome. Due to limitations of existing methods for the data analysis of this data, a novel statistical approach is presented that identifies expressed segments as significant differences from the background distribution and thus avoids dataset-specific parameters. This method detects differentially expressed segments in biological data with significantly lower false discovery rates and equivalent sensitivities compared to commonly used methods. In addition, it is also clearly superior in the recovery of exon-intron structures. Moreover, the search for local accumulations of expressed segments in tiling array data has led to the identification of very large expressed regions that may constitute a new class of macroRNAs. This thesis proceeds with next-generation sequencing for which various protocols have been devised to study genomic, transcriptomic, and epigenomic features. One of the first crucial steps in most NGS data analyses is the mapping of sequencing reads to a reference genome. This work introduces algorithmic methods to solve the mapping tasks for three major NGS protocols: DNA-seq, RNA-seq, and MethylC-seq. All methods have been thoroughly benchmarked and integrated into the segemehl mapping suite. First, mapping of DNA-seq data is facilitated by the core mapping algorithm of segemehl. Since the initial publication, it has been continuously updated and expanded. Here, extensive and reproducible benchmarks are presented that compare segemehl to state-of-the-art read aligners on various data sets. The results indicate that it is not only more sensitive in finding the optimal alignment with respect to the unit edit distance but also very specific compared to most commonly used alternative read mappers. These advantages are observable for both real and simulated reads, are largely independent of the read length and sequencing technology, but come at the cost of higher running time and memory consumption. Second, the split-read extension of segemehl, presented by Hoffmann, enables the mapping of RNA-seq data, a computationally more difficult form of the mapping task due to the occurrence of splicing. Here, the novel tool lack is presented, which aims to recover missed RNA-seq read alignments using de novo splice junction information. It performs very well in benchmarks and may thus be a beneficial extension to RNA-seq analysis pipelines. Third, a novel method is introduced that facilitates the mapping of bisulfite-treated sequencing data. This protocol is considered the gold standard in genome-wide studies of DNA methylation, one of the major epigenetic modifications in animals and plants. The treatment of DNA with sodium bisulfite selectively converts unmethylated cytosines to uracils, while methylated ones remain unchanged. The bisulfite extension developed here performs seed searches on a collapsed alphabet followed by bisulfite-sensitive dynamic programming alignments. Thus, it is insensitive to bisulfite-related mismatches and does not rely on post-processing, in contrast to other methods. In comparison to state-of-the-art tools, this method achieves significantly higher sensitivities and performs time-competitive in mapping millions of sequencing reads to vertebrate genomes. Remarkably, the increase in sensitivity does not come at the cost of decreased specificity and thus may finally result in a better performance in calling the methylation rate. Lastly, the potential of mapping strategies for de novo genome assemblies is demonstrated with the introduction of a new guided assembly procedure. It incorporates mapping as major component and uses the additional information (e.g., annotation) as guide. With this method, the complete mitochondrial genome of Eulimnogammarus verrucosus has been successfully assembled even though the sequencing library has been heavily dominated by nuclear DNA. In summary, this thesis introduces algorithmic methods that significantly improve the analysis of tiling array, DNA-seq, RNA-seq, and MethylC-seq data, and proposes standards for benchmarking NGS read aligners. Moreover, it presents a new guided assembly procedure that has been successfully applied in the de novo assembly of a crustacean mitogenome. / Diese Arbeit befasst sich mit der Entwicklung und dem Benchmarken von Verfahren zur Analyse von Daten aus Hochdurchsatz-Technologien, wie Tiling Arrays oder Hochdurchsatz-Sequenzierung. Tiling Arrays bildeten lange Zeit die Grundlage für die genomweite Untersuchung des Transkriptoms und kamen beispielsweise bei der Identifizierung funktioneller Elemente im menschlichen Genom zum Einsatz. In dieser Arbeit wird ein neues statistisches Verfahren zur Auswertung von Tiling Array-Daten vorgestellt. Darin werden Segmente als exprimiert klassifiziert, wenn sich deren Signale signifikant von der Hintergrundverteilung unterscheiden. Dadurch werden keine auf den Datensatz abgestimmten Parameterwerte benötigt. Die hier vorgestellte Methode erkennt differentiell exprimierte Segmente in biologischen Daten bei gleicher Sensitivität mit geringerer Falsch-Positiv-Rate im Vergleich zu den derzeit hauptsächlich eingesetzten Verfahren. Zudem ist die Methode bei der Erkennung von Exon-Intron Grenzen präziser. Die Suche nach Anhäufungen exprimierter Segmente hat darüber hinaus zur Entdeckung von sehr langen Regionen geführt, welche möglicherweise eine neue Klasse von macroRNAs darstellen. Nach dem Exkurs zu Tiling Arrays konzentriert sich diese Arbeit nun auf die Hochdurchsatz-Sequenzierung, für die bereits verschiedene Sequenzierungsprotokolle zur Untersuchungen des Genoms, Transkriptoms und Epigenoms etabliert sind. Einer der ersten und entscheidenden Schritte in der Analyse von Sequenzierungsdaten stellt in den meisten Fällen das Mappen dar, bei dem kurze Sequenzen (Reads) auf ein großes Referenzgenom aligniert werden. Die vorliegende Arbeit stellt algorithmische Methoden vor, welche das Mapping-Problem für drei wichtige Sequenzierungsprotokolle (DNA-Seq, RNA-Seq und MethylC-Seq) lösen. Alle Methoden wurden ausführlichen Benchmarks unterzogen und sind in der segemehl-Suite integriert. Als Erstes wird hier der Kern-Algorithmus von segemehl vorgestellt, welcher das Mappen von DNA-Sequenzierungsdaten ermöglicht. Seit der ersten Veröffentlichung wurde dieser kontinuierlich optimiert und erweitert. In dieser Arbeit werden umfangreiche und auf Reproduzierbarkeit bedachte Benchmarks präsentiert, in denen segemehl auf zahlreichen Datensätzen mit bekannten Mapping-Programmen verglichen wird. Die Ergebnisse zeigen, dass segemehl nicht nur sensitiver im Auffinden von optimalen Alignments bezüglich der Editierdistanz sondern auch sehr spezifisch im Vergleich zu anderen Methoden ist. Diese Vorteile sind in realen und simulierten Daten unabhängig von der Sequenzierungstechnologie oder der Länge der Reads erkennbar, gehen aber zu Lasten einer längeren Laufzeit und eines höheren Speicherverbrauchs. Als Zweites wird das Mappen von RNA-Sequenzierungsdaten untersucht, welches bereits von der Split-Read-Erweiterung von segemehl unterstützt wird. Aufgrund von Spleißen ist diese Form des Mapping-Problems rechnerisch aufwendiger. In dieser Arbeit wird das neue Programm lack vorgestellt, welches darauf abzielt, fehlende Read-Alignments mit Hilfe von de novo Spleiß-Information zu finden. Es erzielt hervorragende Ergebnisse und stellt somit eine sinnvolle Ergänzung zu Analyse-Pipelines für RNA-Sequenzierungsdaten dar. Als Drittes wird eine neue Methode zum Mappen von Bisulfit-behandelte Sequenzierungsdaten vorgestellt. Dieses Protokoll gilt als Goldstandard in der genomweiten Untersuchung der DNA-Methylierung, einer der wichtigsten epigenetischen Modifikationen in Tieren und Pflanzen. Dabei wird die DNA vor der Sequenzierung mit Natriumbisulfit behandelt, welches selektiv nicht methylierte Cytosine zu Uracilen konvertiert, während Methylcytosine davon unberührt bleiben. Die hier vorgestellte Bisulfit-Erweiterung führt die Seed-Suche auf einem reduziertem Alphabet durch und verifiziert die erhaltenen Treffer mit einem auf dynamischer Programmierung basierenden Bisulfit-sensitiven Alignment-Algorithmus. Das verwendete Verfahren ist somit unempfindlich gegenüber Bisulfit-Konvertierungen und erfordert im Gegensatz zu anderen Verfahren keine weitere Nachverarbeitung. Im Vergleich zu aktuell eingesetzten Programmen ist die Methode sensitiver und benötigt eine vergleichbare Laufzeit beim Mappen von Millionen von Reads auf große Genome. Bemerkenswerterweise wird die erhöhte Sensitivität bei gleichbleibend guter Spezifizität erreicht. Dadurch könnte diese Methode somit auch bessere Ergebnisse bei der präzisen Bestimmung der Methylierungsraten erreichen. Schließlich wird noch das Potential von Mapping-Strategien für Assemblierungen mit der Einführung eines neuen, Kristallisation-genanntes Verfahren zur unterstützten Assemblierung aufgezeigt. Es enthält Mapping als Hauptbestandteil und nutzt Zusatzinformation (z.B. Annotationen) als Unterstützung. Dieses Verfahren ermöglichte die erfolgreiche Assemblierung des kompletten mitochondrialen Genoms von Eulimnogammarus verrucosus trotz einer vorwiegend aus nukleärer DNA bestehenden genomischen Bibliothek. Zusammenfassend stellt diese Arbeit algorithmische Methoden vor, welche die Analysen von Tiling Array, DNA-Seq, RNA-Seq und MethylC-Seq Daten signifikant verbessern. Es werden zudem Standards für den Vergleich von Programmen zum Mappen von Daten der Hochdurchsatz-Sequenzierung vorgeschlagen. Darüber hinaus wird ein neues Verfahren zur unterstützten Genom-Assemblierung vorgestellt, welches erfolgreich bei der de novo-Assemblierung eines mitochondrialen Krustentier-Genoms eingesetzt wurde.

Page generated in 0.0355 seconds